A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards.

A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards.

Shifts within the geographic distribution of habitats over time can promote dispersal and vicariance, thereby influencing large-scale biogeographic patterns and ecological processes. An instance is that of transient corridors of appropriate habitat throughout disjunct however ecologically related areas, which have been related to local weather change over time. Such connections probably performed a job within the meeting of tropical communities, particularly inside the extremely various Amazonian and Atlantic rainforests of South America.

Though these forests are presently separated by open and dry ecosystems, paleoclimatic and phylogenetic proof recommend that they’ve been transiently related up to now. Nevertheless, little is thought in regards to the timing, magnitude and the distribution of former forest connections. We make use of sequence information at a number of loci from three codistributed arboreal lizards (Anolis punctatus, Anolis ortonii and Polychrus marmoratus) to deduce the phylogenetic relationships amongst Amazonian and Atlantic Forest populations and to check various historic demographic eventualities of colonization and vicariance utilizing coalescent simulations and approximate Bayesian computation (ABC).

Knowledge from the better-sampled Anolis species help colonization of the Atlantic Forest from japanese Amazonia. Hierarchical ABC signifies that the three species colonized the Atlantic Forest synchronously in the course of the mid-Pleistocene. We discover help of inhabitants bottlenecks related to founder occasions within the two Anolis, however not in P. marmoratus, persistently with their distinct ecological tolerances. Our findings help that climatic fluctuations supplied key alternatives for dispersal and forest colonization in japanese South America by means of the cessation of environmental obstacles. Proof of species-specific histories strengthens assertions that organic attributes play a job in responses to shared environmental change.

The Anolis Lizard Genome: An Amniote Genome with out Isochores?

Two articles revealed 5 years in the past concluded that the genome of the lizard Anolis carolinensis is an amniote genome with out isochores. This declare was apparently contradicting earlier outcomes on the overall presence of an isochore group in all vertebrate genomes examined (together with Anolis). On this investigation, we exhibit that the Anolis genome is certainly heterogeneous in base composition, since its macrochromosomes comprise isochores primarily from the L2 and H1 households (a reasonably GC-poor and a reasonably GC-rich household, respectively), and for the reason that majority of the sequenced microchromosomes consists of H1 isochores.

These households are related to completely different options of genome construction, together with gene density and compositional correlations (e.g., GC3 vs flanking sequence GC and intron GC), as within the case of mammalian and avian genomes. Furthermore, the assembled Anolis chromosomes have an unlimited variety of gaps, which might be as a result of sequencing issues in GC-rich areas of the genome. In conclusion, the Anolis genome isn’t any exception to the overall rule of an isochore group within the genomes of vertebrates (and different eukaryotes).

Adaptive radiations present distinctive alternatives to check whether or not and the way latest ecological and evolutionary diversification of host species buildings the composition of whole bacterial communities. We used 16S rRNA gene sequencing of faecal samples to check for variations within the intestine microbiota of six species of Puerto Rican Anolis lizards characterised by the evolution of distinct ‘ecomorphs’ associated to variations in habitat use. Comparisons of those populations with allopatric conspecifics additionally revealed geographic variations in bacterial alpha range and beta range inside every species.

We discovered substantial variation within the composition of the microbiota inside every species and ecomorph (trunk-crown, trunk-ground, grass-bush), however no variations in bacterial alpha range amongst species or ecomorphs. Beta range analyses revealed refined however important variations in bacterial composition associated to host phylogeny and species, however these variations weren’t persistently related to Anolis ecomorph. Comparability of a trunk-ground species from this clade (A. cristatellus) with a distantly associated member of the identical ecomorph class (A. sagrei) the place the 2 species have been launched and are actually sympatric in Florida revealed pronounced variations within the alpha range and beta range of their microbiota regardless of their ecological similarity.

A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards.

Complete primer design for evaluation of inhabitants genetics in non-sequenced organisms.

Nuclear sequence markers are useful gizmo for the examine of the historical past of populations and adaptation. Nevertheless, it’s not straightforward to acquire a number of nuclear primers for organisms with poor or no genomic sequence data. Right here we used the genomes of organisms which were totally sequenced to design complete units of primers to amplify polymorphic genomic fragments of a number of nuclear genes in non-sequenced organisms.
First, we recognized a lot of candidate polymorphic areas that have been flanked on both sides by conserved areas within the reference genomes. We then designed primers primarily based on these conserved sequences and examined whether or not the primers might be used to amplify sequences in goal species, montane brown frog (Rana ornativentris), anole lizard (Anolis sagrei), guppy (Poecilia reticulata), and fruit fly (Drosophila melanogaster), for inhabitants genetic evaluation. We efficiently obtained polymorphic markers for all goal species studied.

Goat Angiotensin 1 ELISA Kit

MBS028718-INQUIRE INQUIRE Ask for price

Goat Angiotensin 1 ELISA Kit

MBS735912-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin 1 ELISA Kit

MBS735912-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin 1 ELISA Kit

MBS735912-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin 1 ELISA Kit

MBS735912-96StripWells 96-Strip-Wells
EUR 690

Goat Angiotensin (1-7) ELISA kit

E01A43768 96T
EUR 700
Description: ELISA

Goat Angiotensin (1-7) ELISA kit

E06A0206-192T 192 tests
EUR 1524
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin (1-7) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin (1-7) ELISA kit

E06A0206-48 1 plate of 48 wells
EUR 624
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin (1-7) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin (1-7) ELISA kit

E06A0206-96 1 plate of 96 wells
EUR 822
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin (1-7) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 1-9 ELISA Kit

MBS092961-INQUIRE INQUIRE Ask for price

Goat Angiotensin (1-7) ELISA Kit

MBS736993-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin (1-7) ELISA Kit

MBS736993-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin (1-7) ELISA Kit

MBS736993-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin (1-7) ELISA Kit

MBS736993-96StripWells 96-Strip-Wells
EUR 690

Goat Angiotensin IV ELISA Kit

E01A45303 96T
EUR 700
Description: ELISA

Goat Angiotensin 2 ELISA kit

E01A43766 96T
EUR 700
Description: ELISA

Goat Angiotensin 3 ELISA kit

E01A43767 96T
EUR 700
Description: ELISA

Goat Angiotensin 2 ELISA kit

E06A0204-192T 192 tests
EUR 1524
Description: A sandwich ELISA for quantitative measurement of Goat Angiotensin 2 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2 ELISA kit

E06A0204-48 1 plate of 48 wells
EUR 624
Description: A sandwich ELISA for quantitative measurement of Goat Angiotensin 2 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2 ELISA kit

E06A0204-96 1 plate of 96 wells
EUR 822
Description: A sandwich ELISA for quantitative measurement of Goat Angiotensin 2 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 3 ELISA kit

E06A0205-192T 192 tests
EUR 1524
Description: A sandwich ELISA for quantitative measurement of Goat Angiotensin 3 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 3 ELISA kit

E06A0205-48 1 plate of 48 wells
EUR 624
Description: A sandwich ELISA for quantitative measurement of Goat Angiotensin 3 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 3 ELISA kit

E06A0205-96 1 plate of 96 wells
EUR 822
Description: A sandwich ELISA for quantitative measurement of Goat Angiotensin 3 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 4 ELISA Kit

MBS008397-INQUIRE INQUIRE Ask for price

Goat Angiotensin 2 ELISA Kit

MBS011259-INQUIRE INQUIRE Ask for price

Goat Angiotensin 3 ELISA Kit

MBS035728-INQUIRE INQUIRE Ask for price

Goat Angiotensin IV ELISA Kit

MBS7274335-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin IV ELISA Kit

MBS7274335-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin IV ELISA Kit

MBS7274335-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin IV ELISA Kit

MBS7274335-96StripWells 96-Strip-Wells
EUR 690

Goat Angiotensin 3 ELISA Kit

MBS743606-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin 3 ELISA Kit

MBS743606-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin 3 ELISA Kit

MBS743606-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin 3 ELISA Kit

MBS743606-96StripWells 96-Strip-Wells
EUR 690

Goat Angiotensin 2 ELISA Kit

MBS739397-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin 2 ELISA Kit

MBS739397-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin 2 ELISA Kit

MBS739397-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin 2 ELISA Kit

MBS739397-96StripWells 96-Strip-Wells
EUR 690

Goat Angiotensin 1 (ANG-1) ELISA Kit

MBS285993-10x96StripWells 10x96-Strip-Wells
EUR 6255

Goat Angiotensin 1 (ANG-1) ELISA Kit

MBS285993-48StripWells 48-Strip-Wells
EUR 445

Goat Angiotensin 1 (ANG-1) ELISA Kit

MBS285993-5x96StripWells 5x96-Strip-Wells
EUR 3290

Goat Angiotensin 1 (ANG-1) ELISA Kit

MBS285993-96StripWells 96-Strip-Wells
EUR 730

Goat Angiotensin Receptor 1 ELISA kit

E01A45178 96T
EUR 700
Description: ELISA

Goat Angiotensin Receptor 1 ELISA kit

E06A2158-192T 192 tests
EUR 1524
Description: A competitive for quantitative measurement of Goat Angiotensin Receptor 1 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin Receptor 1 ELISA kit

E06A2158-48 1 plate of 48 wells
EUR 624
Description: A competitive for quantitative measurement of Goat Angiotensin Receptor 1 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin Receptor 1 ELISA kit

E06A2158-96 1 plate of 96 wells
EUR 822
Description: A competitive for quantitative measurement of Goat Angiotensin Receptor 1 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin Receptor 1 ELISA Kit

MBS7258429-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin Receptor 1 ELISA Kit

MBS7258429-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin Receptor 1 ELISA Kit

MBS7258429-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin Receptor 1 ELISA Kit

MBS7258429-96StripWells 96-Strip-Wells
EUR 690

Goat Angiotensin 2- 7 ELISA kit

E01A43756 96T
EUR 700
Description: ELISA

Goat Angiotensin 2- 7 ELISA kit

E06A0113-192T 192 tests
EUR 1524
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 2- 7 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2- 7 ELISA kit

E06A0113-48 1 plate of 48 wells
EUR 624
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 2- 7 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2- 7 ELISA kit

E06A0113-96 1 plate of 96 wells
EUR 822
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 2- 7 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2-7 ELISA Kit

MBS010340-INQUIRE INQUIRE Ask for price

Goat Angiotensin 2-7 ELISA Kit

MBS748266-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin 2-7 ELISA Kit

MBS748266-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin 2-7 ELISA Kit

MBS748266-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin 2-7 ELISA Kit

MBS748266-96StripWells 96-Strip-Wells
EUR 690

Goat Angiotensin(ANG) ELISA Kit

NSL1354Gt 96T
EUR 528

Goat Angiotensin (ANG) ELISA Kit

MBS269010-10x96StripWells 10x96-Strip-Wells
EUR 3545

Goat Angiotensin (ANG) ELISA Kit

MBS269010-48StripWells 48-Strip-Wells
EUR 310

Goat Angiotensin (ANG) ELISA Kit

MBS269010-5x96StripWells 5x96-Strip-Wells
EUR 1940

Goat Angiotensin (ANG) ELISA Kit

MBS269010-96StripWells 96-Strip-Wells
EUR 475

Goat Angiotensin(ANG) ELISA Kit

EIA05043Go each
EUR 520

Goat Angiotensin II Receptor 1 ELISA kit

E01A43883 96T
EUR 700
Description: ELISA

Goat Angiotensin II Receptor 1 ELISA kit

E06A0495-192T 192 tests
EUR 1524
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin II Receptor 1 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin II Receptor 1 ELISA kit

E06A0495-48 1 plate of 48 wells
EUR 624
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin II Receptor 1 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin II Receptor 1 ELISA kit

E06A0495-96 1 plate of 96 wells
EUR 822
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin II Receptor 1 in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin II Receptor 1 ELISA Kit

MBS004992-INQUIRE INQUIRE Ask for price

Goat Angiotensin II Receptor 1 ELISA Kit

MBS738577-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin II Receptor 1 ELISA Kit

MBS738577-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin II Receptor 1 ELISA Kit

MBS738577-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin II Receptor 1 ELISA Kit

MBS738577-96StripWells 96-Strip-Wells
EUR 690

Angiotensin ELISA Kit (Goat) (OKEH04795)

OKEH04795 96 Wells
EUR 496.8
Description: Description of target: ;Species reactivity: Goat;Application: ;Assay info: Assay Methodology: Quantitative Competitive Inhibition Immunoassay;Sensitivity:

Goat Angiotensin 1-7 (ANG 1-7) ELISA Kit

MBS2608504-10x96StripWells 10x96-Strip-Wells
EUR 3545

Goat Angiotensin 1-7 (ANG 1-7) ELISA Kit

MBS2608504-48StripWells 48-Strip-Wells
EUR 310

Goat Angiotensin 1-7 (ANG 1-7) ELISA Kit

MBS2608504-5x96StripWells 5x96-Strip-Wells
EUR 1940

Goat Angiotensin 1-7 (ANG 1-7) ELISA Kit

MBS2608504-96StripWells 96-Strip-Wells
EUR 475

Goat Angiotensin 1-7 (ANG1-7) ELISA kit

E06A0225-192T 192 tests
EUR 1524
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 1-7 (ANG1-7) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 1-7 (ANG1-7) ELISA kit

E06A0225-48 1 plate of 48 wells
EUR 624
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 1-7 (ANG1-7) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 1-7 (ANG1-7) ELISA kit

E06A0225-96 1 plate of 96 wells
EUR 822
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 1-7 (ANG1-7) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin(ANG II) ELISA Kit

NSL1353Gt 96T
EUR 528

Goat Angiotensin (ANG II) ELISA Kit

MBS263938-10x96StripWells 10x96-Strip-Wells
EUR 3545

Goat Angiotensin (ANG II) ELISA Kit

MBS263938-48StripWells 48-Strip-Wells
EUR 310

Goat Angiotensin (ANG II) ELISA Kit

MBS263938-5x96StripWells 5x96-Strip-Wells
EUR 1940

Goat Angiotensin (ANG II) ELISA Kit

MBS263938-96StripWells 96-Strip-Wells
EUR 475

Goat Angiotensin(ANG II) ELISA Kit

EIA05044Go each
EUR 520

Goat Angiotensin 1 Receptor Antibody ELISA kit

E01A43752 96T
EUR 700
Description: ELISA

Goat Angiotensin 1 Receptor Antibody ELISA kit

E06A0109-192T 192 tests
EUR 1524
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 1 Receptor Antibody in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 1 Receptor Antibody ELISA kit

E06A0109-48 1 plate of 48 wells
EUR 624
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 1 Receptor Antibody in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 1 Receptor Antibody ELISA kit

E06A0109-96 1 plate of 96 wells
EUR 822
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 1 Receptor Antibody in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 1 Receptor Antibody ELISA Kit

MBS007991-INQUIRE INQUIRE Ask for price

Goat Angiotensin 1 Receptor Antibody ELISA Kit

MBS742262-10x96StripWells 10x96-Strip-Wells
EUR 5685

Goat Angiotensin 1 Receptor Antibody ELISA Kit

MBS742262-48StripWells 48-Strip-Wells
EUR 485

Goat Angiotensin 1 Receptor Antibody ELISA Kit

MBS742262-5x96StripWells 5x96-Strip-Wells
EUR 3020

Goat Angiotensin 1 Receptor Antibody ELISA Kit

MBS742262-96StripWells 96-Strip-Wells
EUR 690

Goat Angiotensin I(Ang-I) ELISA Kit

NSL1270Gt 96T
EUR 528

Goat Angiotensin I (Ang-I) ELISA Kit

MBS264560-10x96StripWells 10x96-Strip-Wells
EUR 3545

Goat Angiotensin I (Ang-I) ELISA Kit

MBS264560-48StripWells 48-Strip-Wells
EUR 310

Goat Angiotensin I (Ang-I) ELISA Kit

MBS264560-5x96StripWells 5x96-Strip-Wells
EUR 1940

Goat Angiotensin I (Ang-I) ELISA Kit

MBS264560-96StripWells 96-Strip-Wells
EUR 475

Goat Angiotensin I (Ang-I)  ELISA Kit

EIA05256Go each
EUR 520

Goat angiotensin Ⅱ(ANG-Ⅱ) Elisa Kit

EK771082 96 Wells
EUR 0.98

Goat Angiotensin 2,ANG-2 ELISA KIT

E0081GO-1096T 10*96T
EUR 4122

Goat Angiotensin 2,ANG-2 ELISA KIT

E0081GO-48wells 48 wells
EUR 300

Goat Angiotensin 2,ANG-2 ELISA KIT

E0081GO-596T 5*96T
EUR 2061

Goat Angiotensin 2,ANG-2 ELISA KIT

E0081GO-96wells 96 wells
EUR 458

Goat Angiotensin 2 (ANG-2) ELISA Kit

MBS284056-10x96StripWells 10x96-Strip-Wells
EUR 6255

Goat Angiotensin 2 (ANG-2) ELISA Kit

MBS284056-48StripWells 48-Strip-Wells
EUR 445

Goat Angiotensin 2 (ANG-2) ELISA Kit

MBS284056-5x96StripWells 5x96-Strip-Wells
EUR 3290

Goat Angiotensin 2 (ANG-2) ELISA Kit

MBS284056-96StripWells 96-Strip-Wells
EUR 730

Goat angiotensin 4 (ANG-4) ELISA Kit

MBS2600492-10x96StripWells 10x96-Strip-Wells
EUR 3545

Goat angiotensin 4 (ANG-4) ELISA Kit

MBS2600492-48StripWells 48-Strip-Wells
EUR 310

Goat angiotensin 4 (ANG-4) ELISA Kit

MBS2600492-5x96StripWells 5x96-Strip-Wells
EUR 1940

Goat angiotensin 4 (ANG-4) ELISA Kit

MBS2600492-96StripWells 96-Strip-Wells
EUR 475

Goat Angiotensin II (ANG-II) ELISA Kit

MBS1601420-10x96StripWells 10x96-Strip-Wells
EUR 3955

Goat Angiotensin II (ANG-II) ELISA Kit

MBS1601420-48StripWells 48-Strip-Wells
EUR 305

Goat Angiotensin II (ANG-II) ELISA Kit

MBS1601420-5x96StripWells 5x96-Strip-Wells
EUR 2005

Goat Angiotensin II (ANG-II) ELISA Kit

MBS1601420-96StripWells 96-Strip-Wells
EUR 475

OKEH04795-96W - Angiotensin ELISA Kit (Goat)

OKEH04795-96W 96Wells
EUR 325

Goat Angiotensin 2 Receptor 1 Antigen ELISA kit

E01A43753 96T
EUR 700
Description: ELISA

Goat Angiotensin 2 Receptor 1 Antigen ELISA kit

E06A0110-192T 192 tests
EUR 1524
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 2 Receptor 1 Antigen in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2 Receptor 1 Antigen ELISA kit

E06A0110-48 1 plate of 48 wells
EUR 624
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 2 Receptor 1 Antigen in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2 Receptor 1 Antigen ELISA kit

E06A0110-96 1 plate of 96 wells
EUR 822
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 2 Receptor 1 Antigen in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2 Receptor 1 Antibody ELISA kit

E01A43754 96T
EUR 700
Description: ELISA

Goat Angiotensin 2 Receptor 1 Antibody ELISA kit

E06A0111-192T 192 tests
EUR 1524
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 2 Receptor 1 Antibody in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Goat Angiotensin 2 Receptor 1 Antibody ELISA kit

E06A0111-48 1 plate of 48 wells
EUR 624
Description: A competitive ELISA for quantitative measurement of Goat Angiotensin 2 Receptor 1 Antibody in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.
As well as, we discovered that sequence identities of the areas between the primer websites within the reference genomes affected the experimental success of DNA amplification and identification of polymorphic loci within the goal genomes, and that exonic primers had the next success fee than intronic primers in amplifying readable sequences. We conclude that this comparative genomic strategy is a time- and cost-effective solution to acquire polymorphic markers for non-sequenced organisms, and that it’ll contribute to the additional growth of evolutionary ecology and inhabitants genetics for non-sequenced organisms, aiding within the understanding of the genetic foundation of adaptation.

The complete mitochondrial genome of Lacerta bilineata and comparison with its closely related congener L. Viridis.

The complete mitochondrial genome of Lacerta bilineata and comparison with its closely related congener L. Viridis.

We sequenced the mitochondrial genome of the Western inexperienced lizard (Lacerta bilineata) utilizing Illumina know-how and extra Sanger sequencing. The assembled 17 086 bp mitogenome had a GC content material of 40.32% and consisted of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one management area (CR), with a gene order similar to the chordate consensus. As well as, we re-sequenced the mitogenome of the intently associated Jap inexperienced lizard L. viridis utilizing the identical methods as for L. bilineata.

The mitogenomes of L. bilineata and L. viridis confirmed a sequence identification of 94.4% and 99.9%, respectively, relative to the beforehand revealed L. viridis mitogenome. The phylogenetic reconstruction primarily based on 17 Lacertinae mitogenomes utilizing Anolis carolinensis because the outgroup supported L. bilineata and its sister species L. viridis as distinct lineages. On this examine, the expression of genes coding for α-, β- and γ-syns was analyzed within the inexperienced lizard Anolis carolinensis by semiquantitative RT-PCR and Western blot.

The synuclein (syn) household includes three proteins: α-, β- and γ-syns. In people, they’re concerned in neurodegenerative ailments equivalent to Parkinson’s illness and in tumors. Members of the syn household had been sequenced in consultant species of all vertebrates and the comparative evaluation of amino acid sequences means that syns are evolutionarily conserved, however details about their expression in vertebrate lineages remains to be scarce and fully missing in reptiles. Outcomes show good expression ranges of the three syns within the lizard nervous system, equally to human syns. This, along with the excessive identification between lizard and human syns, means that these proteins fulfill evolutionarily conserved features.

Accumulation of transposable components in Hox gene clusters throughout adaptive radiation of Anolis lizards.

Transposable components (TEs) are DNA sequences that may insert elsewhere within the genome and modify genome construction and gene regulation. The function of TEs in evolution is contentious. One speculation posits that TE exercise generates genomic incompatibilities that may trigger reproductive isolation between incipient species. This predicts that TEs will accumulate throughout speciation occasions. Right here, I examined the prediction that extant lineages with a comparatively excessive price of speciation have a excessive variety of TEs of their genomes.

sequenced and analysed the TE content material of a marker genomic area (Hox clusters) in Anolis lizards, a basic case of an adaptive radiation. Not like different vertebrates, together with intently associated lizardsAnolis lizards have excessive numbers of TEs of their Hox clusters, genomic areas that regulate growth of the morphological variations that characterize habitat specialists in these lizards. Following a burst of TE exercise within the lineage resulting in extant Anolis, TEs have continued to build up throughout or after speciation occasions, leading to a constructive relationship between TE density and lineage speciation price. These outcomes are according to the prediction that TE exercise contributes to adaptive radiation by selling speciation.

Though there was no proof that TE density per se is related to ecological morphology, the exercise of TEs in Hox clusters may have been a wealthy supply for phenotypic variation which will have facilitated the fast parallel morphological adaptation to microhabitats seen in extant Anolis lizards. The MALAT1 (Metastasis-Related Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that’s processed into a protracted nuclear retained transcript (MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA).

Utilizing an RNA sequence– and structure-based covariance mannequin, we recognized greater than 130 genomic loci in vertebrate genomes containing the MALAT1 3′ finish triple-helix construction and its quick downstream tRNA-like construction, together with 44 within the inexperienced lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of parts of the three’ finish module. MALAT1-like genes in Anolis carolinensis are extremely expressed in grownup testis, thus we named them testis-abundant lengthy noncoding RNAs (tancRNAs). These findings recommend that differential regulation of microRNAs might play a task in coordinating the timing and expression of tons of of genes concerned in regeneration.

The complete mitochondrial genome of Lacerta bilineata and comparison with its closely related congener L. Viridis.

Differential expression of conserved and novel microRNAs throughout tail regeneration within the lizard Anolis carolinensis.

Lizards are evolutionarily probably the most intently associated vertebrates to people that may lose and regrow a complete appendage. Regeneration in lizards includes differential expression of tons of of genes that regulate wound therapeutic, musculoskeletal growth, hormonal response, and embryonic morphogenesis. Whereas microRNAs are in a position to regulate massive teams of genes, their function in lizard regeneration has not been investigated. MicroRNA sequencing of inexperienced anole lizard (Anolis carolinensis) regenerating tail and related tissues revealed 350 putative novel and 196 recognized microRNA precursors.

Anti- Goat Anti Rabbit IgG (HL) [HRP] Antibody

GWB-5A4353 1 mg Ask for price

IgG Antibody (Rabbit anti Goat) (Fc)

GWB-51506C 1 ml Ask for price

IgG Antibody (Rabbit anti Goat) (Fc)

GWB-7BB68B 1 ml Ask for price

IgG Antibody (Rabbit anti Goat) (Fc)

GWB-CBDFE9 1.5 ml Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-39B790 2 mg Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-3F03E0 2 mg Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-423B57 1 ml Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-4BF9D8 10 mg Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-5F513F 1 mg Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-233373 1.5 ml Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-10D6B2 2 ml Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-1CDFA2 0.5 mg Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-AB00ED 2 ml Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-AC3EDA 5 mg Ask for price

IgG Antibody (Goat anti Rabbit) (H&L)

GWB-74EC69 2 mg Ask for price

Rabbit Anti-Sheep/Goat IgG antibody

STJ99581-100l 100 µl
EUR 104.4
Description: Unconjugated Rabbit monoclonal to Sheep/Goat IgG antibody

Rabbit Anti-Sheep/Goat IgG antibody

STJ99581-1mL 1 mL
EUR 546
Description: Unconjugated Rabbit monoclonal to Sheep/Goat IgG antibody

IgG Antibody (Rabbit anti Goat) (H&L)

GWB-681D85 2 mg Ask for price

IgG Antibody (Rabbit anti Goat) (H&L)

GWB-AFFF41 1.5 mg Ask for price

Goat Anti Rabbit Igg (Fc) Polyclonal Antibody

DPBT-67197GR 0.5 mg
EUR 696

Goat Anti Rabbit Igg/Igm Polyclonal Antibody

DPBT-67204GR 1 mg
EUR 795.6

IgG Antibody (Goat anti Rabbit) F(ab )2

GWB-6B86BE 2 ml Ask for price

Goat anti Rabbit IgG

41C-CB1143 2 mg
EUR 259
Description: Goat anti Rabbit IgG secondary antibody

Goat anti Rabbit IgG

41C-CB1150 10 mg
EUR 985
Description: Goat anti Rabbit IgG secondary antibody

Goat anti Rabbit IgG

41R-1079 2 mg
EUR 127
Description: Goat anti Rabbit IgG secondary antibody

Goat anti Rabbit IgG

40C-CB1157 5 mg Ask for price
Description: Goat anti Rabbit IgG secondary antibody

Goat anti Rabbit IgG

41-GR30 10 mg
EUR 229
Description: Goat anti Rabbit IgG secondary antibody

Goat anti Rabbit IgG

41-GR31 5 mg
EUR 194.4
Description: Goat anti Rabbit IgG secondary antibody

Goat anti Rabbit IgG

40-GR30 100 ml
EUR 332
Description: Goat anti Rabbit IgG secondary antibody

Goat anti Rabbit IgG

40-GR30S 100 ml
EUR 95
Description: Goat anti Rabbit IgG secondary antibody

goat Anti Rabbit IgG

E61I01301 1mg
EUR 172.5

goat Anti Rabbit IgG

MBS8503153-1mg 1mg
EUR 255

goat Anti Rabbit IgG

MBS8503153-5x1mg 5x1mg
EUR 1000

GOAT ANTI RABBIT IgG

MBS235217-1mg 1mg
EUR 245

GOAT ANTI RABBIT IgG

MBS235217-5x1mg 5x1mg
EUR 925

Goat anti Rabbit IgG

MBS539091-INQUIRE INQUIRE Ask for price

Goat anti Rabbit IgG

MBS539100-100mL 100mL
EUR 870

Goat anti Rabbit IgG

MBS539100-5x100mL 5x100mL
EUR 3760

Goat anti Rabbit IgG

MBS539169-10mg 10mg
EUR 605

Goat anti Rabbit IgG

MBS539169-5x10mg 5x10mg
EUR 2570

Goat anti Rabbit IgG

MBS539780-10mg 10mg
EUR 1695

Goat anti Rabbit IgG

MBS539780-5x10mg 5x10mg
EUR 7465

Goat anti Rabbit IgG

MBS539800-2mg 2mg
EUR 480

Goat anti Rabbit IgG

MBS539800-5x2mg 5x2mg
EUR 2005

Goat anti Rabbit IgG Antibody (Fc) (Frag Specific)

GWB-5B2214 1.5 ml Ask for price

Goat Anti Rabbit Igg (H/L) Polyclonal Antibody

CPBT-67353GR 2 mg
EUR 696

Goat Anti Rabbit Igg/Igm Polyclonal Antibody,HRP

DPBT-67203GR 1 ml
EUR 858

Goat Anti Rabbit Igg/Igm Polyclonal Antibody,RPE

DPBT-67205GR 0.5 mg
EUR 1158

Rabbit anti Goat IgG

20-S5801R000-VO 10 ml
EUR 95
Description: Rabbit anti Goat IgG antibody

Rabbit anti Goat IgG

41C-CB0529 2 mg
EUR 234
Description: Rabbit anti Goat IgG secondary antibody

Rabbit anti Goat IgG

40C-CB0536 1.5 mg
EUR 274
Description: Rabbit anti Goat IgG secondary antibody

Rabbit anti Goat IgG

E61I01002 1mg
EUR 225

Rabbit anti Goat IgG

MBS539774-2mg 2mg
EUR 435

Rabbit anti Goat IgG

MBS539774-5x2mg 5x2mg
EUR 1815

Rabbit Anti Goat Igg (Fc) Polyclonal Antibody

DPBT-67069RG 1 mg
EUR 795.6

Goat Anti Rabbit Igg/Igm Polyclonal Antibody,FITC

DPBT-67202GR 1 mg
EUR 852

Rabbit Anti Goat Igg (Fab') Polyclonal Antibody

DPBT-67090RG 0.5 mg
EUR 696

Goat Anti Rabbit Igg/Igm Polyclonal Antibody,TRITC

DPBT-67207GR 1 mg
EUR 795.6

Goat Anti Rabbit Igg/Igm Polyclonal Antibody,Biotin

DPBT-67201GR 1 mg
EUR 852

Rabbit Anti-Sheep / Goat IgG (H&L) Antibody

20-abx134906
  • Ask for price
  • Ask for price
  • 100 ul
  • 500 ul

Rabbit Anti-Sheep / Goat IgG H&L Antibody

abx134906-01mg 0.1 mg
EUR 187.5

Goat anti Rabbit IgG Fc

41C-CB1136 2 mg
EUR 234
Description: Goat anti Rabbit IgG secondary antibody

Goat anti Rabbit IgG Fc

70R-IG011 1.5 mg
EUR 348
Description: Goat anti Rabbit IgG Fc secondary antibody

Goat anti Rabbit IgG Fc

70R-IG017 2 mg
EUR 347
Description: Goat anti Rabbit IgG Fc secondary antibody

GOAT ANTI RABBIT IgG (Fc)

MBS235249-1mg 1mg
EUR 265

GOAT ANTI RABBIT IgG (Fc)

MBS235249-5x1mg 5x1mg
EUR 1020

Goat anti Rabbit IgG (Fc)

MBS316567-2mL 2mL
EUR 590

Goat anti Rabbit IgG (Fc)

MBS316567-5x2mL 5x2mL
EUR 2485

Goat anti Rabbit IgG (Fc)

MBS316619-2mg 2mg
EUR 295

Goat anti Rabbit IgG (Fc)

MBS316619-5x2mg 5x2mg
EUR 1150

Goat anti Rabbit IgG Fc

MBS539776-2mg 2mg
EUR 435

Goat anti Rabbit IgG Fc

MBS539776-5x2mg 5x2mg
EUR 1815

Goat anti Rabbit IgG Fc

MBS534059-2mg 2mg
EUR 485

Goat anti Rabbit IgG Fc

MBS534059-5x2mg 5x2mg
EUR 2030

Goat anti Rabbit IgG Fc

MBS535045-15mg 1.5mg
EUR 490

Goat anti Rabbit IgG Fc

MBS535045-5x15mg 5x1.5mg
EUR 2055

Goat anti Rabbit IgG (HRP)

43C-CB1141 2 mg
EUR 397
Description: Goat anti Rabbit IgG secondary antibody (HRP)

Goat anti Rabbit IgG (HRP)

43C-CB1148 2 mg
EUR 353
Description: Goat anti Rabbit IgG secondary antibody (HRP)

Goat anti Rabbit IgG (HRP)

43C-CB1155 2 mg
EUR 344
Description: Goat anti Rabbit IgG secondary antibody (HRP)

Goat anti Rabbit IgG (HRP)

43C-CB1162 2 mg
EUR 376
Description: Goat anti Rabbit IgG secondary antibody (HRP)

Goat anti Rabbit IgG (HRP)

43R-1495 1 mg
EUR 115
Description: Goat anti Rabbit IgG secondary antibody  (HRP)

Goat anti Rabbit IgG Fab

MBS573197-1mL 1mL
EUR 365

Goat anti Rabbit IgG Fab

MBS573197-5x1mL 5x1mL
EUR 1490

Goat anti Rabbit IgG (HRP)

MBS538611-2mg 2mg
EUR 620

Goat anti Rabbit IgG (HRP)

MBS538611-5x2mg 5x2mg
EUR 2635

Goat anti Rabbit IgG (HRP)

MBS538619-2mg 2mg
EUR 655

Goat anti Rabbit IgG (HRP)

MBS538619-5x2mg 5x2mg
EUR 2805

Goat anti Rabbit IgG (HRP)

MBS539812-2mg 2mg
EUR 595

Goat anti Rabbit IgG (HRP)

MBS539812-5x2mg 5x2mg
EUR 2515

Goat anti Rabbit IgG (HRP)

MBS539843-2mg 2mg
EUR 715

Goat anti Rabbit IgG (HRP)

MBS539843-5x2mg 5x2mg
EUR 3075

Goat anti Rabbit IgG (FITC)

43C-CB1137 2 mg
EUR 256
Description: Goat anti Rabbit IgG secondary antibody (FITC)

Goat anti Rabbit IgG (FITC)

43C-CB1144 2 mg
EUR 293
Description: Goat anti Rabbit IgG secondary antibody (FITC)

Goat anti Rabbit IgG (FITC)

43C-CB1158 2 mg
EUR 418
Description: Goat anti Rabbit IgG secondary antibody (FITC)

Goat anti Rabbit IgG (FITC)

43R-1494 2 mg
EUR 176
Description: Goat anti Rabbit IgG secondary antibody  (FITC)

Goat anti Rabbit IgG (FITC)

43-GR59 2 mg
EUR 276
Description: Goat anti Rabbit IgG secondary antibody (FITC)

Goat anti Rabbit IgG (FITC)

MBS538607-2mg 2mg
EUR 540

Goat anti Rabbit IgG (FITC)

MBS538607-5x2mg 5x2mg
EUR 2280

Goat anti Rabbit IgG (FITC)

MBS538616-2mg 2mg
EUR 750

Goat anti Rabbit IgG (FITC)

MBS538616-5x2mg 5x2mg
EUR 3230

Goat anti Rabbit IgG (FITC)

MBS539784-2mg 2mg
EUR 480

Goat anti Rabbit IgG (FITC)

MBS539784-5x2mg 5x2mg
EUR 2005

Goat anti Rabbit IgG (FITC)

MBS539825-2mg 2mg
EUR 500

Goat anti Rabbit IgG (FITC)

MBS539825-5x2mg 5x2mg
EUR 2105

goat Anti Rabbit IgG-HRP

E61I01303 1mg
EUR 345

Goat anti Rabbit IgG (biotin)

43C-CB1140 2 mg
EUR 297
Description: Goat anti Rabbit IgG secondary antibody (biotin)

Goat anti Rabbit IgG (biotin)

43C-CB1147 2 mg
EUR 373
Description: Goat anti Rabbit IgG secondary antibody (biotin)

Goat anti Rabbit IgG (biotin)

43C-CB1154 2 mg
EUR 297
Description: Goat anti Rabbit IgG secondary antibody (biotin)

Goat anti Rabbit IgG (biotin)

43C-CB1161 2 mg
EUR 376
Description: Goat anti Rabbit IgG secondary antibody (biotin)

Goat anti Rabbit IgG (biotin)

43R-1493 2 mg
EUR 167
Description: Goat anti Rabbit IgG secondary antibody  (biotin)

goat Anti Rabbit IgG-FITC

E61I01304 1mg
EUR 431.25

goat Anti Rabbit IgG-FITC

MBS8502220-1mg 1mg
EUR 510

goat Anti Rabbit IgG-FITC

MBS8502220-5x1mg 5x1mg
EUR 2140

Goat anti Rabbit IgG (biotin)

MBS538610-2mg 2mg
EUR 655

Goat anti Rabbit IgG (biotin)

MBS538610-5x2mg 5x2mg
EUR 2805

Goat anti Rabbit IgG (biotin)

MBS538618-2mg 2mg
EUR 655

Goat anti Rabbit IgG (biotin)

MBS538618-5x2mg 5x2mg
EUR 2805

Goat anti Rabbit IgG (biotin)

MBS539045-2mg 2mg
EUR 540

Goat anti Rabbit IgG (biotin)

MBS539045-5x2mg 5x2mg
EUR 2280

Goat anti Rabbit IgG (biotin)

MBS539773-2mg 2mg
EUR 540

Goat anti Rabbit IgG (biotin)

MBS539773-5x2mg 5x2mg
EUR 2280

goat Anti Rabbit IgG-Biotin

E61I01302 1mg
EUR 345
Eleven microRNAs had been differentially expressed between the regenerating tail tip and base throughout most outgrowth (25 days publish autotomy), together with miR-133a, miR-133b, and miR-206, which have been reported to manage regeneration and stem cell proliferation in different mannequin programs. Three putative novel differentially expressed microRNAs had been recognized within the regenerating tail tip. Differentially expressed microRNAs had been recognized within the regenerating lizard tail, together with recognized regulators of stem cell proliferation. The identification of three putative novel microRNAs means that regulatory networks, both conserved in vertebrates and beforehand uncharacterized or particular to lizards, are concerned in regeneration.

Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage.

Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage.

Intercourse chromosomes differentiated from completely different ancestral autosomes in numerous vertebrate lineages. Right here, we hint the purposeful evolution of the XY Chromosomes of the inexperienced anole lizard (Anolis carolinensis), on the premise of intensive high-throughput genome, transcriptome and histone modification sequencing information and revisit dosage compensation evolution in consultant mammals and birds with substantial new expression information. Our analyses present that Anolis intercourse chromosomes signify an historical XY system that originated at the very least ≈160 million years in the past within the ancestor of Iguania lizards, shortly after the separation from the snake lineage.

The age of this method roughly coincides with the ages of the avian and two mammalian intercourse chromosomes techniques. To compensate for the just about full Y Chromosome degeneration, X-linked genes have grow to be twofold up-regulated, restoring ancestral expression ranges. The extremely environment friendly dosage compensation mechanism of Anolis represents the one vertebrate case recognized to this point to totally assist Ohno’s authentic dosage compensation speculation.

Additional analyses reveal that X up-regulation happens solely in males and is mediated by a male-specific chromatin equipment that results in international hyperacetylation of histone H4 at lysine 16 particularly on the X Chromosome. The inexperienced anole dosage compensation mechanism is extremely paying homage to that of the fruit fly, Drosophila melanogaster Altogether, our work unveils the convergent emergence of a Drosophila-like dosage compensation mechanism in an historical reptilian intercourse chromosome system and highlights that the evolutionary pressures imposed by intercourse chromosome dosage reductions in numerous amniotes had been resolved in basically other ways.

Biogeographic hyperlinks between southern Atlantic Forest and western South America: Rediscovery, re-description, and phylogenetic relationships of two uncommon montane anole lizards from Brazil.

Information on species ranges and phylogenetic relationships are key in historic biogeographical inference. In South America, our understanding of the evolutionary processes that underlie biodiversity patterns varies enormously throughout areas. Little is thought, as an illustration, in regards to the drivers of excessive endemism within the southern montane area of the Atlantic Rainforest. On this area, former biogeographic connections with different South American ecosystems have been invoked to clarify the phylogenetic affinities of quite a few endemic taxa.

his will likely even be the case of the montane anole lizards Anolis nasofrontalis and A. pseudotigrinus, recognized from few specimens collected greater than 40years in the past. We mix new genetic information with printed sequences of species within the Dactyloa clade of Anolis to analyze the phylogenetic relationships of A. nasofrontalis and A. pseudotigrinus, in addition to estimate divergence instances from their closest family.

Based mostly on newly sampled and beforehand missed specimens, we offer a taxonomic re-description of these two taxa. Our phylogenetic evaluation recovered six primary clades inside Dactyloa, 5 of which had been beforehand known as species sequence (aequatorialis, heterodermus, latifrons, punctatus, roquet). A sixth clade clustered A. nasofrontalis and A. pseudotigrinus with A. dissimilis from western Amazonia, A. calimae from the Andes, A. neblininus from the Guiana Defend, and two undescribed Andean taxa. We due to this fact outline a sixth species sequence inside Dactyloa: the neblininus sequence.

Shut phylogenetic relationships between extremely disjunct, narrowly-distributed anoles recommend that patches of appropriate habitat related the southern Atlantic Forest to western South America throughout the Miocene, in settlement with the age of former connections between the central Andes and the Brazilian Defend because of Andean orogeny. The information additionally assist the view of recurrent evolution (or loss) of a twig anole-like phenotype in mainland anoles, in obvious affiliation with the prevalence in montane settings. Our findings stress the worth of complementary genetic sampling efforts throughout South American nations to advance research of mainland anole taxonomy and evolution.

Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage.

Phylogenetic analyses reveal that Schellackia parasites (Apicomplexa) detected in American lizards are carefully associated to the genus Lankesterella: is the vary of Schellackia restricted to the Previous World?

Species of Schellackia Reichenow, 1919 have been described from the blood of reptiles distributed worldwide. Not too long ago, Schellackia spp. detected in European and Asian lizards have been molecularly characterised. Nevertheless, parasites detected in American lizard hosts stay uncharacterised. Thus, phylogenetic affinities between the Previous and New World parasite species are unknown. In reality, the hemococcidian parasites detected within the New World lizards (together with S. occidentalis and S. golvani) had been carefully associated to the genus Lankesterella Labbé, 1899. Consequently, we advise these two species to be included throughout the genus Lankesterella.
Within the current research, we characterised morphologically and molecularly the hemococcidian parasites (sporozoites) that infect three lizard hosts from North America and two from South America. In complete, we generated 12 new 18S rRNA gene sequences of hemococcidian parasites infecting New World lizard hosts. By the microscopic examination of the smears we recognized Schellackia golvani Rogier & Landau, 1975 (ex Anolis carolinensis Voigt) and Schellackia occidentalis Bonorris & Ball, 1955 (ex Uta stansburiana Baird & Girard and Sceloporus occidentalis Baird & Girard) in some samples, however the phylogenetic evaluation indicated that every one 18S rDNA sequences are distant from Schellackia species present in Previous World lizards.

Goat IgG Isotype Control

GWB-B5EB81 100 TESTS Ask for price

Goat IgG Isotype Control

GWB-E035B6 100 TESTS Ask for price

Goat IgG Isotype Control

GWB-D15A0C 100 TESTS Ask for price

Goat IgG isotype control

MBS176681-1mg 1mg
EUR 115

Goat IgG isotype control

MBS176681-5mg 5mg
EUR 150

Goat IgG isotype control

MBS176681-5x5mg 5x5mg
EUR 525

IgG, Goat Isotype Control

MBS655594-5mg 5mg
EUR 370

IgG, Goat Isotype Control

MBS655594-5x5mg 5x5mg
EUR 1505

IgG, Goat Isotype Control

MBS655640-4mg 4mg
EUR 385

IgG, Goat Isotype Control

MBS655640-5x4mg 5x4mg
EUR 1590

PE Goat IgG Isotype Control

E16FGCP006-100 100 tests
EUR 368.33
Description: Available in various conjugation types.

Goat IgG (isotype control), PE

MBS524509-01mg 0.1mg
EUR 225

Goat IgG (isotype control), FITC

MBS524507-01mg 0.1mg
EUR 230

Goat IgG Isotype Control Antibody

MBS1564669-01mg 0.1mg
EUR 340

Goat IgG Isotype Control Antibody

MBS1564669-5x01mg 5x0.1mg
EUR 1235

Goat IgG (isotype control), Purified

MBS524504-2mg 2mg
EUR 230

IgG, Fc, Goat Isotype Control

MBS655649-2mg 2mg
EUR 425

IgG, Fc, Goat Isotype Control

MBS655649-5x2mg 5x2mg
EUR 1770

Goat IgG (H+L) isotype control

BA1044 1mg
EUR 15

IgG, Goat Isotype Control (APC)

MBS655539-100Tests 100Tests
EUR 385

IgG, Goat Isotype Control (APC)

MBS655539-5x100Tests 5x100Tests
EUR 1580

IgG, Fab, Goat Isotype Control

MBS655666-5mg 5mg
EUR 400

IgG, Fab, Goat Isotype Control

MBS655666-5x5mg 5x5mg
EUR 1650

IgG, Goat Isotype Control (FITC)

MBS655763-100Tests 100Tests
EUR 320

IgG, Goat Isotype Control (FITC)

MBS655763-5x100Tests 5x100Tests
EUR 1285

IgG, Goat Isotype Control (Biotin)

MBS655622-05mg 0.5mg
EUR 345

IgG, Goat Isotype Control (Biotin)

MBS655622-5x05mg 5x0.5mg
EUR 1410

Goat F(ab')2 IgG Isotype Control

abx405076-05mg 0.5 mg
EUR 493.2

Goat F(ab )2 IgG Isotype Control

GWB-4FA356 100 TESTS Ask for price

Goat F(ab )2 IgG Isotype Control

GWB-827F32 100 TESTS Ask for price

Goat F(ab )2 IgG Isotype Control

GWB-953EBC 100 TESTS Ask for price

Goat F(ab )2 IgG Isotype Control

GWB-A21E37 0.5 mg Ask for price

Goat F(ab )2 IgG Isotype Control

GWB-712793 100 TESTS Ask for price

Goat F(ab )2 IgG Isotype Control

GWB-B1F87E 100 TESTS Ask for price

Goat F(ab )2 IgG Isotype Control

GWB-ECE6CB 100 TESTS Ask for price

Goat F(ab )2 IgG Isotype Control

GWB-CF433F 5 mg Ask for price

Goat F(ab')2 IgG Isotype Control

abx405076-250g 250 µg
EUR 300

IgG, Goat Isotype Control (PE/Cy7)

MBS655499-100Tests 100Tests
EUR 385

IgG, Goat Isotype Control (PE/Cy7)

MBS655499-5x100Tests 5x100Tests
EUR 1580

IgG, Goat Isotype Control (PE/CY5)

MBS655517-100Tests 100Tests
EUR 380

IgG, Goat Isotype Control (PE/CY5)

MBS655517-5x100Tests 5x100Tests
EUR 1560

Goat IgG-PE conjugate (isotype control)

20011-PE 100 tests
EUR 270

Goat IgG-HRP conjugate (isotype control)

20011-HP 100 ug
EUR 196.8

Goat IgG-FITC conjugate (isotype control)

20011-F 100 ug
EUR 196.8

Goat F(ab')2 IgG Isotype Control (PE)

abx405078-100g 100 µg
EUR 437.5

Goat F(ab')2 IgG Isotype Control (RPE)

abx405078-05ml 0.5 ml
EUR 644.4

Goat F(ab')2 IgG Isotype Control (FITC)

abx405077-100tests 100 tests
EUR 594

Goat F(ab')2 IgG Isotype Control (FITC)

abx405077-100g 100 µg
EUR 387.5

Goat IgG (-ve control for flow cytometry) (isotype control)

20011-100 100 test
EUR 123.6

Alexa Fluor® 647 Goat IgG Isotype Control

E16FGCK006-100 100 tests
EUR 563.33
Description: Available in various conjugation types.

Normal Goat Polyclonal Isotype Control IgG

nAP-0014 1mg
EUR 459

Goat IgG (fc)-HRP conjugate (isotype control)

20011-Fc-HP 100 ug
EUR 196.8

Goat IgG (fc)-FITC conjugate (isotype control)

20011-Fc-F 100 ug
EUR 196.8

Goat IgG (fc)-Biotin conjugate (isotype control)

20011-Fc-B 100 ug
EUR 196.8

Goat IgG, purified (serum non-immune, isotype control)

20011-25 25 mg
EUR 562.8

Goat IgG, purified (serum non-immune, isotype control)

20011-5 5 mg
EUR 343.2

Rat IgG-PE conjugate (isotype control) (Isotype control)

20005-PE 25 tests
EUR 242.4

Rat IgG-HRP conjugate (isotype control) (Isotype control)

20005-HP 100 ug
EUR 196.8

OOSA10406-500UG - GOAT F(ab')2 IgG NEGATIVE CONTROL Negative/Isotype Control

OOSA10406-500UG 0.5mg
EUR 339

Rat IgG-FITC conjugate (isotype control) (Isotype control)

20005-F 100 ug
EUR 196.8

Rat IgG-Biotin conjugate (isotype control) (Isotype control)

20005-B 100 ug
EUR 196.8

Rat IgG Isotype Control

31-AR15 10 mg
EUR 183
Description: Purified Rat IgG Isotype Control

Rat IgG Isotype Control

GWB-37FCE4 10 mg Ask for price

Rat IgG Isotype Control

GWB-4BFFB2 0.5 mg Ask for price

Dog IgG Isotype Control

GWB-323C1E 5 mg Ask for price

Rat IgG Isotype Control

GWB-1E8B74 0.1 mg Ask for price

Rat IgG Isotype Control

GWB-76BDF3 0.1 mg Ask for price

Rat IgG Isotype Control

GWB-787682 0.1 mg Ask for price

Rat IgG Isotype Control

GWB-7A6404 0.1 mg Ask for price

Rat IgG Isotype Control

GWB-F39C54 0.5 mg Ask for price

Rat IgG Isotype Control

GWB-F7A192 0.5 mg Ask for price

Rat IgG Isotype Control

GWB-B6F703 0.1 mg Ask for price

Rat IgG Isotype Control

GWB-CFDA81 0.1 mg Ask for price

Rat IgG Isotype Control

GWB-D9CFB7 0.1 mg Ask for price

Rat IgG Isotype Control

GWB-BEE47C 0.1 mg Ask for price

Rat IgG Isotype Control

MBS537341-10mg 10mg
EUR 380

Rat IgG Isotype Control

MBS537341-5x10mg 5x10mg
EUR 1550

Human IgG Isotype Control

GWB-38F945 1 ml Ask for price

Mouse IgG Isotype Control

GWB-4662CD 0.1 mg Ask for price

Mouse IgG Isotype Control

GWB-46ECA9 0.5 mg Ask for price

Mouse IgG Isotype Control

GWB-552B59 0.1 mg Ask for price

Human IgG Isotype Control

GWB-2CF422 1.0 mg Ask for price

Mouse IgG Isotype Control

GWB-2F1CBA 0.1 mg Ask for price

Mouse IgG Isotype Control

GWB-1B0AB3 0.5 mg Ask for price

Mouse IgG Isotype Control

GWB-1BE5E5 10 mg Ask for price

Sheep IgG Isotype Control

GWB-1E6DA3 1 mg Ask for price

Mouse IgG Isotype Control

IC002-100ul 100ul
EUR 146.4

Mouse IgG Isotype Control

GWB-949104 0.1 mg Ask for price

Sheep IgG Isotype Control

GWB-9688FE 0.1 mg Ask for price

Sheep IgG Isotype Control

GWB-710114 5 mg Ask for price

Mouse IgG Isotype Control

GWB-75892E 0.1 mg Ask for price

Mouse IgG Isotype Control

GWB-E00547 1 ml Ask for price

Mouse IgG Isotype Control

GWB-EDB4A9 0.5 mg Ask for price

Mouse IgG Isotype Control

GWB-D166E3 0.1 mg Ask for price

Human IgG Isotype Control

GWB-BDF954 1 ml Ask for price

Mouse IgG Isotype Control

GWB-BEF412 0.1 mg Ask for price

Mouse IgG Isotype Control

abx127121-100l 100 µl
EUR 150

Mouse IgG Isotype Control

abx127121-1ml 1 ml Ask for price

Mouse IgG Isotype Control

abx127121-200l 200 µl Ask for price

Human IgG Isotype Control

DAGIC1333 10 mg
EUR 724.5
Description: Human

Mouse IgG Isotype Control

MBS9436856-INQUIRE INQUIRE Ask for price

Rabbit IgG Isotype Control

abx125003-100ul 100 ul
EUR 243.6

Rabbit IgG isotype control

AC042 100μL
EUR 292.5
Description: None

Rabbit IgG Isotype Control

GWB-1EF918 100 TESTS Ask for price

Rabbit IgG Isotype Control

GWB-12A897 100 TESTS Ask for price

Rabbit IgG Isotype Control

IC001-100ul 100ul
EUR 146.4

Rabbit IgG Isotype Control

GWB-F3BC41 10 mg Ask for price

Rabbit IgG Isotype Control

abx125003-100l 100 µl
EUR 150

Rabbit IgG Isotype Control

abx125003-1ml 1 ml Ask for price

Rabbit IgG Isotype Control

abx125003-200l 200 µl Ask for price

Rabbit IgG Isotype Control

CABT-B8382 500 µg
EUR 598.5
Description: Rabbit

Rabbit IgG Isotype Control

MBS669057-0025mg 0.025mg
EUR 165

Rabbit IgG Isotype Control

MBS669057-01mg 0.1mg
EUR 220

Rabbit IgG Isotype Control

MBS669057-5x01mg 5x0.1mg
EUR 990

Rabbit IgG Isotype Control

MBS2140235-01mg 0.1mg
EUR 295

Rabbit IgG Isotype Control

MBS9436855-01mL 0.1mL
EUR 180

Rabbit IgG isotype control

AC045 200μL
EUR 56.68

Rabbit IgG isotype control

AC046 200μL
EUR 92.11

Hamster IgG Isotype Control

GWB-419E75 0.1 mg Ask for price

Hamster IgG Isotype Control

GWB-47E59E 0.5 mg Ask for price

Hamster IgG Isotype Control

GWB-528DB9 0.1 mg Ask for price

Hamster IgG Isotype Control

GWB-6571A8 0.5 mg Ask for price

Hamster IgG Isotype Control

GWB-30C10C 0.1 mg Ask for price

Hamster IgG Isotype Control

GWB-3114BE 0.5 mg Ask for price

Hamster IgG Isotype Control

GWB-3413D0 0.1 mg Ask for price

Hamster IgG Isotype Control

GWB-1A8D7A 0.1 mg Ask for price

Hamster IgG Isotype Control

GWB-4DBCD9 0.1 mg Ask for price

Hamster IgG Isotype Control

GWB-EE081F 0.5 mg Ask for price

Hamster IgG Isotype Control

GWB-C224BD 0.1 mg Ask for price

IgG, Rat Isotype Control

MBS655490-5mg 5mg
EUR 395

IgG, Rat Isotype Control

MBS655490-5x5mg 5x5mg
EUR 1630

IgG Isotype Control antibody

10R-6524 50 ug
EUR 123
Description: Armenian Hamster monoclonal IgG Isotype Control antibody

IgG Isotype Control antibody

10R-6525 50 ug
EUR 123
Description: Syrian Hamster monoclonal IgG Isotype Control antibody

IgG Isotype Control antibody

MBS832485-005mg 0.05mg
EUR 260

IgG Isotype Control antibody

MBS832485-5x005mg 5x0.05mg
EUR 1030

IgG Isotype Control antibody

MBS833423-005mg 0.05mg
EUR 260

IgG Isotype Control antibody

MBS833423-5x005mg 5x0.05mg
EUR 1030

IgG, Sheep Isotype Control

MBS655724-5mg 5mg
EUR 335

IgG, Sheep Isotype Control

MBS655724-5x5mg 5x5mg
EUR 1360

IgG, Murine Isotype Control

MBS655569-05mg 0.5mg
EUR 440

IgG, Murine Isotype Control

MBS655569-5x05mg 5x0.5mg
EUR 1825

IgG, Rabbit Isotype Control

MBS655621-5mg 5mg
EUR 375
Life historical past traits of hemococcidian parasites akin to the kind of host blood cells contaminated, host species or variety of refractile our bodies usually are not legitimate diagnostic traits to distinguish the parasites between the genera Schellackia and Lankesterella. Certainly, lankesterellid parasites with a distinct variety of refractile our bodies had a detailed phylogenetic origin. Based mostly on the phylogenetic outcomes we offer a scientific revision of the North American hemococcidians. Our advice is to incorporate the species previously described within the genus Schellackia that infect American lizards into Lankesterella (Lankesterellidae) as Lankesterella golvani (Rogier & Landau, 1975) n. comb and L. occidentalis (Bonorris & Ball, 1955) n. comb.

Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer.

Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer.

What makes a species capable of colonize novel environments? This query is vital to grasp the dynamics of adaptive radiations and ecological area of interest shifts, however the mechanisms that underlie growth into novel habitats stay poorly understood at a genomic scale. Lizards from the genus Anolis are usually tropical, and the inexperienced anole (Anolis carolinensis) constitutes an exception because it expanded into temperate North America from subtropical Florida. Thus, we used the inexperienced anole as a mannequin to research signatures of choice related to colonization of a brand new atmosphere, particularly temperate North America. To this finish, we analysed 29 whole-genome sequences, masking all the native vary of the species.

We used a mix of latest strategies to quantify each constructive and balancing choice in northern populations, together with FST outlier strategies, machine studying and ancestral recombination graphs. We naively scanned for genes of curiosity and assessed the overlap between a number of checks. Strikingly, we recognized many genes concerned in behaviour, suggesting that the latest profitable colonization of northern environments might have been linked to behavioural shifts in addition to physiological adaptation. Utilizing a candidate genes technique, we decided that genes concerned in response to chilly or behaviour displayed extra often indicators of choice, whereas controlling for native recombination charge, gene clustering and gene size.

The Epigenetic Signature of Colonizing New Environments in Anolis Lizards.

Founder populations typically present fast divergence from supply populations after colonizing new environments. Epigenetic modifications can mediate phenotypic responses to environmental change and could also be an vital mechanism selling fast differentiation in founder populations. Whereas many long-term research have explored the extent to which divergence between supply and founder populations is genetically heritable versus plastic, the function of epigenetic processes throughout colonization stays unclear. To research epigenetic modifications in founding populations, we experimentally colonized eight small Caribbean islands with brown anole lizards (Anolis sagrei) from a standard supply inhabitants.
We then quantitatively measured genome-wide DNA methylation in liver tissue utilizing lowered illustration bisulfite sequencing of people transplanted onto islands with high- versus low-habitat high quality. We discovered that lizard intercourse and habitat high quality defined a major proportion of epigenetic variation. Differentially methylated cytosines mapped to genes that encode proteins with features more likely to be related to habitat change (e.g., sign transduction, immune response, circadian rhythm). This research gives experimental proof of a relationship between epigenetic responses and the earliest phases of colonization of novel environments in nature and means that habitat high quality influences the character of those epigenetic modifications.
Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer.

Genetic Content material of the Neo-Intercourse Chromosomes in Ctenonotus and Norops (Squamata, Dactyloidae) and Degeneration of the Y Chromosome as Revealed by Excessive-Throughput Sequencing of Particular person Chromosomes.

Pleurodont lizards are characterised by an historical system of intercourse chromosomes. Together with stability of the central part of the system (homologous to the X chromosome of Anolis carolinensis [Dactyloidae], ACAX), in some genera the ancestral intercourse chromosomes are fused with microautosomes, forming neo-sex chromosomes. The genus Ctenonotus (Dactyloidae) is characterised by a number of X1X1X2X2/X1X2Y intercourse chromosomes.

Based on cytogenetic information, the massive neo-Y chromosome is fashioned by fusion of the ancestral Y chromosome with 2 microautosomes (homologous to ACA10 or ACA11 and ACA12), the X1 chromosome is fashioned by fusion of the ancestral X chromosome with the autosome homologous to ACA10 or ACA11, and the X2 chromosome is homologous to autosome ACA12. As well as, we discovered signatures of balancing choice at immune genes in all investigated genetic teams, but in addition at genes concerned in neuronal and anatomical improvement. Physique weights and meals consumption have been monitored and fecal samples have been collected for high-throughput 16S rRNA gene amplicon sequencing and analytical chemistry at days zero and 15.

To find out extra exactly the content material and evolution of the Ctenonotus intercourse chromosomes, we sequenced flow-sorted chromosomes (each intercourse chromosomes and microautosomes as management) of two species with an identical system: C. pogus and C. sabanus. Our outcomes point out that the translocated a part of the X1 is homologous to ACA11, X2 is homologous to ACA12, and the Y incorporates segments homologous to each ACA11 and ACA12. Molecular divergence estimates counsel that the ancestral X-derived half has fully degenerated within the Y of Ctenonotus, much like the degeneration of the Norops sagrei Y chromosome (Dactyloidae). The newly added areas present lack of DNA content material, however with out degeneration of the conserved areas. We hypothesize that the translocation of autosomal blocks onto intercourse chromosomes facilitated fast degeneration of the pseudoautosomal area on the ancestral Y.

Recombinant Anolis carolinensis Rhodopsin (RHO)

MBS7028555-5x01mg 5x0.1mg
EUR 11780

Recombinant Anolis carolinensis Melanotropin alpha

MBS1126167-005mgBaculovirus 0.05mg(Baculovirus)
EUR 875

Recombinant Anolis carolinensis Melanotropin alpha

MBS1126167-005mgEColi 0.05mg(E-Coli)
EUR 490

Recombinant Anolis carolinensis Melanotropin alpha

MBS1126167-005mgYeast 0.05mg(Yeast)
EUR 695

Recombinant Anolis carolinensis Melanotropin alpha

MBS1126167-02mgEColi 0.2mg(E-Coli)
EUR 640

Recombinant Anolis carolinensis Melanotropin alpha

MBS1126167-05mgEColi 0.5mg(E-Coli)
EUR 700

Recombinant Anolis carolinensis Red-sensitive opsin

MBS1138664-INQUIRE INQUIRE Ask for price

Recombinant Anolis carolinensis Rhodopsin (RHO), partial

MBS7056789-INQUIRE INQUIRE Ask for price

Recombinant Anolis carolinensis Red-sensitive opsin

MBS7036112-002mg 0.02mg
EUR 1690

Recombinant Anolis carolinensis Red-sensitive opsin

MBS7036112-01mg 0.1mg
EUR 2645

Recombinant Anolis carolinensis Red-sensitive opsin

MBS7036112-5x01mg 5x0.1mg
EUR 11865

Recombinant Anolis carolinensis Blue-sensitive opsin

MBS1243123-INQUIRE INQUIRE Ask for price

Recombinant Anolis carolinensis Blue-sensitive opsin

MBS7036111-002mg 0.02mg
EUR 1670

Recombinant Anolis carolinensis Blue-sensitive opsin

MBS7036111-01mg 0.1mg
EUR 2630

Recombinant Anolis carolinensis Blue-sensitive opsin

MBS7036111-5x01mg 5x0.1mg
EUR 11790

Recombinant Anolis carolinensis Red-sensitive opsin, partial

MBS7060668-INQUIRE INQUIRE Ask for price

Recombinant Anolis carolinensis Blue-sensitive opsin, partial

MBS7061224-INQUIRE INQUIRE Ask for price

Recombinant Anolis carolinensis Dual specificity phosphatase DUPD1 (DUPD1)

MBS1107230-002mgBaculovirus 0.02mg(Baculovirus)
EUR 1135

Recombinant Anolis carolinensis Dual specificity phosphatase DUPD1 (DUPD1)

MBS1107230-002mgEColi 0.02mg(E-Coli)
EUR 720

Recombinant Anolis carolinensis Dual specificity phosphatase DUPD1 (DUPD1)

MBS1107230-002mgYeast 0.02mg(Yeast)
EUR 890

Recombinant Anolis carolinensis Dual specificity phosphatase DUPD1 (DUPD1)

MBS1107230-01mgEColi 0.1mg(E-Coli)
EUR 865

Recombinant Anolis carolinensis Dual specificity phosphatase DUPD1 (DUPD1)

MBS1107230-01mgYeast 0.1mg(Yeast)
EUR 1040

Recombinant Hogna carolinensis M-lycotoxin-Hc2a

MBS1082013-005mgBaculovirus 0.05mg(Baculovirus)
EUR 885

Recombinant Hogna carolinensis M-lycotoxin-Hc2a

MBS1082013-005mgEColi 0.05mg(E-Coli)
EUR 510

Recombinant Hogna carolinensis M-lycotoxin-Hc2a

MBS1082013-005mgYeast 0.05mg(Yeast)
EUR 705

Recombinant Hogna carolinensis M-lycotoxin-Hc2a

MBS1082013-02mgEColi 0.2mg(E-Coli)
EUR 665

Recombinant Hogna carolinensis M-lycotoxin-Hc2a

MBS1082013-05mgEColi 0.5mg(E-Coli)
EUR 710

Recombinant Hogna carolinensis M-lycotoxin-Hc1a

MBS1066683-005mgBaculovirus 0.05mg(Baculovirus)
EUR 885

Recombinant Hogna carolinensis M-lycotoxin-Hc1a

MBS1066683-005mgEColi 0.05mg(E-Coli)
EUR 505

Recombinant Hogna carolinensis M-lycotoxin-Hc1a

MBS1066683-005mgYeast 0.05mg(Yeast)
EUR 705

Recombinant Hogna carolinensis M-lycotoxin-Hc1a

MBS1066683-02mgEColi 0.2mg(E-Coli)
EUR 665

Recombinant Hogna carolinensis M-lycotoxin-Hc1a

MBS1066683-05mgEColi 0.5mg(E-Coli)
EUR 705

Recombinant Sciurus carolinensis Cytochrome b (MT-CYB)

MBS7021826-002mg 0.02mg
EUR 1455

Recombinant Sciurus carolinensis Cytochrome b (MT-CYB)

MBS7021826-01mg 0.1mg
EUR 2420

Recombinant Sciurus carolinensis Cytochrome b (MT-CYB)

MBS7021826-5x01mg 5x0.1mg
EUR 10840

Recombinant Sciurus carolinensis Hemoglobin subunit beta

MBS1212070-002mgBaculovirus 0.02mg(Baculovirus)
EUR 1070

Recombinant Sciurus carolinensis Hemoglobin subunit beta

MBS1212070-002mgEColi 0.02mg(E-Coli)
EUR 655

Recombinant Sciurus carolinensis Hemoglobin subunit beta

MBS1212070-002mgYeast 0.02mg(Yeast)
EUR 820

Recombinant Sciurus carolinensis Hemoglobin subunit beta

MBS1212070-01mgEColi 0.1mg(E-Coli)
EUR 760

Recombinant Sciurus carolinensis Hemoglobin subunit beta

MBS1212070-01mgYeast 0.1mg(Yeast)
EUR 960

Recombinant Sciurus carolinensis Hemoglobin subunit alpha

MBS1143327-002mgBaculovirus 0.02mg(Baculovirus)
EUR 1065

Recombinant Sciurus carolinensis Hemoglobin subunit alpha

MBS1143327-002mgEColi 0.02mg(E-Coli)
EUR 650

Recombinant Sciurus carolinensis Hemoglobin subunit alpha

MBS1143327-002mgYeast 0.02mg(Yeast)
EUR 815

Recombinant Sciurus carolinensis Hemoglobin subunit alpha

MBS1143327-01mgEColi 0.1mg(E-Coli)
EUR 750

Recombinant Sciurus carolinensis Hemoglobin subunit alpha

MBS1143327-01mgYeast 0.1mg(Yeast)
EUR 955

Recombinant Sciurus carolinensis Cytochrome b (MT-CYB), partial

MBS7077525-INQUIRE INQUIRE Ask for price

Recombinant Blarina carolinensis Cytochrome b (MT-CYB), partial

MBS7095415-INQUIRE INQUIRE Ask for price

Recombinant Sciurus carolinensis Cytochrome c oxidase subunit 2 (MT-CO2)

MBS1095654-INQUIRE INQUIRE Ask for price

Recombinant Sciurus carolinensis Cytochrome c oxidase subunit 2 (MT-CO2)

MBS7021635-002mg 0.02mg
EUR 1520

Recombinant Sciurus carolinensis Cytochrome c oxidase subunit 2 (MT-CO2)

MBS7021635-01mg 0.1mg
EUR 2480

Recombinant Sciurus carolinensis Cytochrome c oxidase subunit 2 (MT-CO2)

MBS7021635-5x01mg 5x0.1mg
EUR 11115

Recombinant Sciurus carolinensis Medium-wave-sensitive opsin 1 (OPN1MW)

MBS1096520-INQUIRE INQUIRE Ask for price

Recombinant Sciurus carolinensis Medium-wave-sensitive opsin 1 (OPN1MW)

MBS7024550-002mg 0.02mg
EUR 1685

Recombinant Sciurus carolinensis Medium-wave-sensitive opsin 1 (OPN1MW)

MBS7024550-01mg 0.1mg
EUR 2640

Recombinant Sciurus carolinensis Medium-wave-sensitive opsin 1 (OPN1MW)

MBS7024550-5x01mg 5x0.1mg
EUR 11840

Recombinant Sciurus carolinensis Medium-wave-sensitive opsin 1 (OPN1MW), partial

MBS7056519-INQUIRE INQUIRE Ask for price

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase large chain (rbcL)

MBS1145851-002mgBaculovirus 0.02mg(Baculovirus)
EUR 1355

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase large chain (rbcL)

MBS1145851-002mgEColi 0.02mg(E-Coli)
EUR 1055

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase large chain (rbcL)

MBS1145851-002mgYeast 0.02mg(Yeast)
EUR 1125

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase large chain (rbcL)

MBS1145851-01mgEColi 0.1mg(E-Coli)
EUR 1230

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase large chain (rbcL)

MBS1145851-01mgYeast 0.1mg(Yeast)
EUR 1310

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase small chain (rbcS)

MBS1432054-002mgBaculovirus 0.02mg(Baculovirus)
EUR 1060

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase small chain (rbcS)

MBS1432054-002mgEColi 0.02mg(E-Coli)
EUR 645

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase small chain (rbcS)

MBS1432054-002mgYeast 0.02mg(Yeast)
EUR 815

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase small chain (rbcS)

MBS1432054-01mgEColi 0.1mg(E-Coli)
EUR 750

Recombinant Porphyra carolinensis Ribulose bisphosphate carboxylase small chain (rbcS)

MBS1432054-01mgYeast 0.1mg(Yeast)
EUR 950

Recombinant Sciurus carolinensis Cytochrome c oxidase subunit 2 (MT-CO2), partial

MBS7055941-INQUIRE INQUIRE Ask for price

Recombinant Estrogen Receptor Beta (ERb)

RPU56468-100ug 100ug
EUR 414.2

Recombinant Estrogen Receptor Beta (ERb)

RPU56468-1mg 1mg
EUR 1922

Recombinant Estrogen Receptor Beta (ERb)

RPU56468-50ug 50ug
EUR 295.7

Recombinant Estrogen Receptor Beta (ERb)

RPU41319-100ug 100ug
EUR 369.6

Recombinant Estrogen Receptor Beta (ERb)

RPU41319-1mg 1mg
EUR 1638

Recombinant Estrogen Receptor Beta (ERb)

RPU41319-50ug 50ug
EUR 297

Recombinant Estrogen Receptor Beta (ERb)

RPU41320-100ug 100ug
EUR 517

Recombinant Estrogen Receptor Beta (ERb)

RPU41320-1mg 1mg
EUR 2293.2

Recombinant Estrogen Receptor Beta (ERb)

RPU41320-50ug 50ug
EUR 415.8

Recombinant Estrogen Receptor Beta (ERb)

RPA437Hu01 10ug
EUR 120

Recombinant Estrogen Receptor Beta (ERb)

4-RPA437Hu01
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg
Description: Recombinant Human Estrogen Receptor Beta expressed in: E.coli

Recombinant Estrogen Receptor Beta (ERb)

RPA437Mu01 10ug
EUR 168

Recombinant Estrogen Receptor Beta (ERb)

4-RPA437Mu01
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg
Description: Recombinant Mouse Estrogen Receptor Beta expressed in: E.coli

Recombinant Estrogen Receptor Beta (ERb)

MBS2012018-001mg 0.01mg
EUR 170

Recombinant Estrogen Receptor Beta (ERb)

MBS2012018-005mg 0.05mg
EUR 295

Recombinant Estrogen Receptor Beta (ERb)

MBS2012018-01mg 0.1mg
EUR 445

Recombinant Estrogen Receptor Beta (ERb)

MBS2012018-02mg 0.2mg
EUR 540

Recombinant Estrogen Receptor Beta (ERb)

MBS2012018-05mg 0.5mg
EUR 1025

Recombinant Estrogen Receptor Beta (ERb)

MBS2011168-001mg 0.01mg
EUR 140

Recombinant Estrogen Receptor Beta (ERb)

MBS2011168-005mg 0.05mg
EUR 235

Recombinant Estrogen Receptor Beta (ERb)

MBS2011168-01mg 0.1mg
EUR 325

Recombinant Estrogen Receptor Beta (ERb)

MBS2011168-05mg 0.5mg
EUR 745

Recombinant Estrogen Receptor Beta (ERb)

MBS2011168-02mg 0.2mg
EUR 400

Recombinant Rat Estrogen receptor (Esr1)

MBS954611-002mgBaculovirus 0.02mg(Baculovirus)
EUR 1460

Recombinant Rat Estrogen receptor (Esr1)

MBS954611-002mgEColi 0.02mg(E-Coli)
EUR 1155

Recombinant Rat Estrogen receptor (Esr1)

MBS954611-002mgYeast 0.02mg(Yeast)
EUR 1220

Recombinant Rat Estrogen receptor (Esr1)

MBS954611-01mgEColi 0.1mg(E-Coli)
EUR 1390

Recombinant Rat Estrogen receptor (Esr1)

MBS954611-01mgYeast 0.1mg(Yeast)
EUR 1430

Recombinant Estrogen Receptor Alpha (ERa)

RPU55645-100ug 100ug
EUR 712.8

Recombinant Estrogen Receptor Alpha (ERa)

RPU55645-1mg 1mg
EUR 2808

Recombinant Estrogen Receptor Alpha (ERa)

RPU55645-50ug 50ug
EUR 432

Recombinant Estrogen Receptor Alpha (ERa)

RPU56877-100ug 100ug
EUR 470.4

Recombinant Estrogen Receptor Alpha (ERa)

RPU56877-1mg 1mg
EUR 2184

Recombinant Estrogen Receptor Alpha (ERa)

RPU56877-50ug 50ug
EUR 385

Recombinant Estrogen Receptor Alpha (ERa)

RPU53018-100ug 100ug
EUR 542.3

Recombinant Estrogen Receptor Alpha (ERa)

RPU53018-1mg 1mg
EUR 2402.4

Recombinant Estrogen Receptor Alpha (ERa)

RPU53018-50ug 50ug
EUR 435.6

Recombinant Estrogen Receptor Alpha (ERa)

RPU53516-100ug 100ug
EUR 554.4

Recombinant Estrogen Receptor Alpha (ERa)

RPU53516-1mg 1mg
EUR 2457

Recombinant Estrogen Receptor Alpha (ERa)

RPU53516-50ug 50ug
EUR 445.5

Recombinant Estrogen Receptor Alpha (ERa)

RPU41318-100ug 100ug
EUR 591.8

Recombinant Estrogen Receptor Alpha (ERa)

RPU41318-1mg 1mg
EUR 2620.8

Recombinant Estrogen Receptor Alpha (ERa)

RPU41318-50ug 50ug
EUR 475.2

Recombinant Estrogen Receptor Alpha (ERa)

RPB050Hu01 10ug
EUR 180

Recombinant Estrogen Receptor Alpha (ERa)

4-RPB050Hu01
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg
Description: Recombinant Human Estrogen Receptor Alpha expressed in: E.coli

Recombinant Estrogen Receptor Alpha (ERa)

RPB050Hu02 10ug
EUR 180

Recombinant Estrogen Receptor Alpha (ERa)

4-RPB050Hu02
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg
Description: Recombinant Human Estrogen Receptor Alpha expressed in: E.coli

Recombinant Estrogen Receptor Alpha (ERa)

RPB050Mu01 10ug
EUR 176

Recombinant Estrogen Receptor Alpha (ERa)

4-RPB050Mu01
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg
Description: Recombinant Mouse Estrogen Receptor Alpha expressed in: E.coli

Recombinant Estrogen Receptor Alpha (ERa)

RPB050Ra01 10ug
EUR 192

Recombinant Estrogen Receptor Alpha (ERa)

4-RPB050Ra01
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • Ask for price
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg
Description: Recombinant Rat Estrogen Receptor Alpha expressed in: E.coli

Recombinant Estrogen Receptor Alpha (ERa)

MBS2029262-001mg 0.01mg
EUR 170

Recombinant Estrogen Receptor Alpha (ERa)

MBS2029262-005mg 0.05mg
EUR 305

Recombinant Estrogen Receptor Alpha (ERa)

MBS2029262-01mg 0.1mg
EUR 460

Recombinant Estrogen Receptor Alpha (ERa)

MBS2029262-02mg 0.2mg
EUR 560

Recombinant Estrogen Receptor Alpha (ERa)

MBS2029262-05mg 0.5mg
EUR 1065

Recombinant Estrogen Receptor Alpha (ERa)

MBS2031769-001mg 0.01mg
EUR 175

Recombinant Estrogen Receptor Alpha (ERa)

MBS2031769-005mg 0.05mg
EUR 310

Recombinant Estrogen Receptor Alpha (ERa)

MBS2031769-01mg 0.1mg
EUR 470

Recombinant Estrogen Receptor Alpha (ERa)

MBS2031769-02mg 0.2mg
EUR 575

Recombinant Estrogen Receptor Alpha (ERa)

MBS2031769-05mg 0.5mg
EUR 1090

Recombinant Estrogen Receptor Alpha (ERa)

MBS2009574-001mg 0.01mg
EUR 180

Recombinant Estrogen Receptor Alpha (ERa)

MBS2009574-005mg 0.05mg
EUR 325

Recombinant Estrogen Receptor Alpha (ERa)

MBS2009574-01mg 0.1mg
EUR 495

Recombinant Estrogen Receptor Alpha (ERa)

MBS2009574-02mg 0.2mg
EUR 610

Recombinant Estrogen Receptor Alpha (ERa)

MBS2009574-05mg 0.5mg
EUR 1160

Recombinant Estrogen Receptor Alpha (ERa)

MBS2105327-001mg 0.01mg
EUR 175

Microbiome research targeted on ecologically related vertebrate fashions like reptiles have been restricted. Due to their comparatively small residence vary, quick maturation, and excessive fecundity, lizards are a superb reptilian terrestrial indicator species. For this research we used the inexperienced anole, Anolis carolinensis, to evaluate the impression of navy related contaminants on fecal microbiome composition. Fourteen day sub-acute exposures have been carried out by way of oral gavage with 2,4,6-Trinitrotoluene (TNT) and inorganic lead at doses of 60 mg/kg and 20 mg/kg of physique weight, respectively.

Detection of genes positively selected in Cuban Anolis lizards that naturally inhabit hot and open areas and currently thrive in urban areas

Detection of genes positively selected in Cuban Anolis lizards that naturally inhabit hot and open areas and currently thrive in urban areas

Species of Anolis lizards of the West Indies that naturally inhabit sizzling and open areas additionally are likely to thrive in city areas. On this research, transcriptome was sequenced for 9 species of Cuban Anolis lizards which are intently associated to one another, however inhabit completely different thermal microhabitats. Utilizing PAML and HyPhy software program, we tried to establish genes and amino acid websites below constructive choice within the frequent ancestral department of A. porcatus and A. allisoni, and the department of A. sagrei, which inhabit sizzling and open areas, and thrive in city areas. We offer proof for the lack of a multi-exonic plasminogen receptor KT (PLGRKT) protein-encoding gene situated on the Z chromosome in hen.

Though there have been no genes the place constructive choice was generally detected on each of the examined branches, constructive choice was detected in genes concerned within the stress response (e.g., DNA harm and oxidative stress) and cardiac operate, which could possibly be associated to adaptive evolution of tolerance to warmth or ultraviolet radiation, on each branches. These findings counsel that adaptive evolution of the response to emphasize attributable to warmth or ultraviolet radiation might need occurred in ancestors of Anolis species inhabiting sizzling and open areas and could be associated to the present thriving in city areas of them.

The lack of conserved genes has the potential to change phenotypes drastically. Screening of vertebrate genomes for lineage-specific gene loss occasions has recognized quite a few pure knockouts related to particular phenotypes. Exons 1 and a pair of are solely lacking; remnants of exon three and a largely intact exon four are recognized in an meeting gap-free area in hen with conserved synteny throughout species and verified utilizing transcriptome and genome sequencing. PLGRKT gene disrupting adjustments are current in consultant species from all 5 galliform households. In distinction to this, the presence of an intact transcriptionally lively PLGRKT gene in species corresponding to mallard, swan goose, and Anolis lizard means that gene loss occurred within the galliform lineage someday between 68 and 80 Mya. The presence of galliform particular hen repeat 1 (CR1) insertion on the erstwhile exon 2 of PLGRKT gene suggests repeat insertion-mediated loss.

Transcriptome sequencing reveals signatures of constructive choice within the Spot-Tailed Earless Lizard

The continuous lack of threatened biodiversity is going on at an accelerated tempo. Excessive-throughput sequencing applied sciences at the moment are offering alternatives to deal with this subject by aiding within the technology of molecular information for a lot of understudied species of excessive conservation curiosity. Our total purpose of this research was to start constructing the genomic assets to proceed investigations and conservation of the Spot-Tailed Earless lizard. Right here we leverage the facility of high-throughput sequencing to generate the liver transcriptome for the Northern Spot-Tailed Earless Lizard (Holbrookia lacerata) and Southern Spot-Tailed Earless Lizard (Holbrookia subcaudalis), which have declined in abundance prior to now a long time, and their sister species, the Frequent Lesser Earless Lizard (Holbrookia maculata).

Our efforts produced top quality and strong transcriptome assemblies validated by 1) quantifying the variety of processed reads represented within the transcriptome meeting and a pair of) quantifying the variety of extremely conserved single-copy orthologs which are current in our transcript set utilizing the BUSCO pipeline. We discovered 1,361 1-to-1 orthologs among the many three Holbrookia species, Anolis carolinensis, and Sceloporus undulatus. We carried out dN/dS choice exams utilizing a branch-sites mannequin and recognized a dozen genes that skilled constructive choice within the Holbrookia lineage with capabilities in improvement, immunity, and metabolism. Our single-copy orthologous sequences moreover revealed important pairwise sequence divergence (~.73%) between the Northern H. lacerata and Southern H. subcaudalis that additional helps the current elevation of the Southern Spot-Tailed Earless Lizard to full species.

Detection of genes positively selected in Cuban Anolis lizards that naturally inhabit hot and open areas and currently thrive in urban areas

First report of intercourse chromosomes in night time lizards (Scincoidea: Xantusiidae).

Squamate reptiles (lizards, snakes, and amphisbaenians) are an impressive group for finding out intercourse chromosome evolution-they are previous, speciose, geographically widespread, and exhibit myriad intercourse figuring out modes. But, the overwhelming majority of squamate species lack heteromorphic intercourse chromosomes. Cataloguing the intercourse chromosome methods of species missing simply identifiable, heteromorphic intercourse chromosomes, due to this fact, is crucial earlier than we’re to completely perceive the evolution of vertebrate intercourse chromosomes.
Right here, we use restriction-site related DNA sequencing (RADseq) to categorise the intercourse chromosome system of the granite night time lizard, Xantusia henshawi. RADseq is an efficient different to conventional cytogenetic strategies for figuring out a species’ intercourse chromosome system (i.e. XX/XY or ZZ/ZW), significantly in taxa with non-differentiated intercourse chromosomes. Though many xantusiid lineages have been karyotyped, none possess heteromorphic intercourse chromosomes. We recognized a ZZ/ZW intercourse chromosome system in X. henshawi-the first such information for this household. Moreover, we report that the X. henshawi intercourse chromosome comprises fragments of genes discovered on Gallus gallus chromosomes 7, 12, and 18 (that are homologous to Anolis carolinensis chromosome 2), the primary vertebrate intercourse chromosomes to make the most of this linkage group.

Recombinant Anolis pulchellus Fatty acid-binding protein, liver

MBS1318334-05mgEColi 0.5mg(E-Coli)
EUR 890

Recombinant Diadromus pulchellus Histone H4

MBS1149367-002mgBaculovirus 0.02mg(Baculovirus)
EUR 1025

Recombinant Diadromus pulchellus Histone H4

MBS1149367-002mgEColi 0.02mg(E-Coli)
EUR 600

Recombinant Diadromus pulchellus Histone H4

MBS1149367-002mgYeast 0.02mg(Yeast)
EUR 780

Recombinant Diadromus pulchellus Histone H4

MBS1149367-01mgEColi 0.1mg(E-Coli)
EUR 695

Recombinant Diadromus pulchellus Histone H4

MBS1149367-01mgYeast 0.1mg(Yeast)
EUR 910

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S8

MBS1372314-005mgBaculovirus 0.05mg(Baculovirus)
EUR 1180

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S8

MBS1372314-005mgEColi 0.05mg(E-Coli)
EUR 945

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S8

MBS1372314-005mgYeast 0.05mg(Yeast)
EUR 1065

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S8

MBS1372314-02mgEColi 0.2mg(E-Coli)
EUR 1225

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S8

MBS1372314-05mgEColi 0.5mg(E-Coli)
EUR 1350

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S7 (S7)

MBS1326141-005mgBaculovirus 0.05mg(Baculovirus)
EUR 1215

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S7 (S7)

MBS1326141-005mgEColi 0.05mg(E-Coli)
EUR 990

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S7 (S7)

MBS1326141-005mgYeast 0.05mg(Yeast)
EUR 1100

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S7 (S7)

MBS1326141-02mgEColi 0.2mg(E-Coli)
EUR 1285

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S7 (S7)

MBS1326141-05mgEColi 0.5mg(E-Coli)
EUR 1415

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S9 (S9)

MBS7029222-002mg 0.02mg
EUR 1670

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S9 (S9)

MBS7029222-01mg 0.1mg
EUR 2625

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S9 (S9)

MBS7029222-5x01mg 5x0.1mg
EUR 11780

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S10 (S10)

MBS1473617-005mgBaculovirus 0.05mg(Baculovirus)
EUR 1125

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S10 (S10)

MBS1473617-005mgEColi 0.05mg(E-Coli)
EUR 815

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S10 (S10)

MBS1473617-005mgYeast 0.05mg(Yeast)
EUR 965

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S10 (S10)

MBS1473617-02mgEColi 0.2mg(E-Coli)
EUR 1090

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S10 (S10)

MBS1473617-05mgEColi 0.5mg(E-Coli)
EUR 1160

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S9 (S9), partial

MBS7090753-INQUIRE INQUIRE Ask for price

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S3 (S2), partial

MBS7091349-INQUIRE INQUIRE Ask for price

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S2 (S2), partial

MBS1341423-INQUIRE INQUIRE Ask for price

Recombinant Diadromus pulchellus idnoreovirus 1 Uncharacterized protein S3bis (S3bis), partial

MBS1462485-INQUIRE INQUIRE Ask for price

Fatty Acid Binding Protein-1 Rat Recombinant

rAP-3277 Inquiry Ask for price

Recombinant Rat Fatty Acid Binding Protein-1

MBS141180-0005mg 0.005mg
EUR 240

Recombinant Rat Fatty Acid Binding Protein-1

MBS141180-0025mg 0.025mg
EUR 310

Recombinant Rat Fatty Acid Binding Protein-1

MBS141180-1mg 1mg
EUR 2880

Recombinant Rat Fatty Acid Binding Protein-1

MBS141180-5x1mg 5x1mg
EUR 12630

Fatty Acid Binding Protein-1 Human (Recombinant)

22060987-1 5 µg
EUR 137.27

Fatty Acid Binding Protein-6 Human (Recombinant)

22060994-1 5 µg
EUR 137.27

Fatty Acid Binding Protein-7 Human (Recombinant)

22060996-1 5 µg
EUR 137.27

Human Fatty Acid Binding Protein-3 (Recombinant)

22060323-1 5 µg
EUR 137.27

Recombinant Human Fatty acid binding protein-3

AP60475 100ug
EUR 939

Recombinant Human Fatty Acid Binding Protein-1

7-05116 5µg Ask for price

Recombinant Human Fatty Acid Binding Protein-1

7-05117 25µg Ask for price

Recombinant Human Fatty Acid Binding Protein-1

7-05118 1mg Ask for price

Recombinant Human Fatty Acid Binding Protein-2

7-05119 5µg Ask for price

Recombinant Human Fatty Acid Binding Protein-2

7-05120 25µg Ask for price

Recombinant Human Fatty Acid Binding Protein-2

7-05121 1mg Ask for price

Recombinant Human Fatty Acid Binding Protein-3

7-05122 5µg Ask for price

Recombinant Human Fatty Acid Binding Protein-3

7-05123 20µg Ask for price

Recombinant Human Fatty Acid Binding Protein-3

7-05124 1mg Ask for price

Recombinant Human Fatty Acid Binding Protein-4

7-05128 2µg Ask for price

Recombinant Human Fatty Acid Binding Protein-4

7-05129 10µg Ask for price

Recombinant Human Fatty Acid Binding Protein-4

7-05130 1mg Ask for price

Recombinant Human Fatty Acid Binding Protein-5

7-05134 2µg Ask for price

Recombinant Human Fatty Acid Binding Protein-5

7-05135 10µg Ask for price

Recombinant Human Fatty Acid Binding Protein-5

7-05136 1mg Ask for price

Recombinant Human Fatty Acid Binding Protein-6

7-05140 5µg Ask for price

Recombinant Human Fatty Acid Binding Protein-6

7-05141 20µg Ask for price

Recombinant Human Fatty Acid Binding Protein-6

7-05142 1mg Ask for price

Recombinant Human Fatty Acid Binding Protein-7

7-05146 5µg Ask for price

Recombinant Human Fatty Acid Binding Protein-7

7-05147 25µg Ask for price

Recombinant Human Fatty Acid Binding Protein-7

7-05148 1mg Ask for price

Fatty Acid Binding Protein-9 Human Recombinant

rAP-3272 Inquiry Ask for price

Fatty Acid Binding Protein-1 Mouse Recombinant

rAP-3273 Inquiry Ask for price

Fatty Acid Binding Protein-2 Human Recombinant

rAP-3275 Inquiry Ask for price

Fatty Acid Binding Protein-1 Human Recombinant

rAP-3276 Inquiry Ask for price

Fatty Acid Binding Protein-3 Human Recombinant

rAP-3278 Inquiry Ask for price

Fatty Acid Binding Protein-7 Human Recombinant

rAP-3283 Inquiry Ask for price

Fatty Acid Binding Protein-6 Human Recombinant

rAP-3284 Inquiry Ask for price

Recombinant Human Fatty Acid Binding Protein-4

MBS142971-0002mg 0.002mg
EUR 240

Recombinant Human Fatty Acid Binding Protein-4

MBS142971-001mg 0.01mg
EUR 310

Recombinant Human Fatty Acid Binding Protein-4

MBS142971-1mg 1mg
EUR 4460

Recombinant Human Fatty Acid Binding Protein-4

MBS142971-5x1mg 5x1mg
EUR 19750

Recombinant Human Fatty Acid Binding Protein-5

MBS142972-0002mg 0.002mg
EUR 240

Recombinant Human Fatty Acid Binding Protein-5

MBS142972-001mg 0.01mg
EUR 310

Recombinant Human Fatty Acid Binding Protein-5

MBS142972-1mg 1mg
EUR 4460

Recombinant Human Fatty Acid Binding Protein-5

MBS142972-5x1mg 5x1mg
EUR 19750

Recombinant Human Fatty Acid Binding Protein-3

MBS142895-0005mg 0.005mg
EUR 240

Recombinant Human Fatty Acid Binding Protein-3

MBS142895-002mg 0.02mg
EUR 310

Recombinant Human Fatty Acid Binding Protein-3

MBS142895-1mg 1mg
EUR 4225

Recombinant Human Fatty Acid Binding Protein-3

MBS142895-5x1mg 5x1mg
EUR 18685

Recombinant Mouse Fatty Acid Binding Protein-1

MBS144609-0005mg 0.005mg
EUR 240

Recombinant Mouse Fatty Acid Binding Protein-1

MBS144609-0025mg 0.025mg
EUR 310

Recombinant Mouse Fatty Acid Binding Protein-1

MBS144609-1mg 1mg
EUR 2880

Recombinant Mouse Fatty Acid Binding Protein-1

MBS144609-5x1mg 5x1mg
EUR 12630

Recombinant Human Fatty Acid Binding Protein-2

MBS146346-0005mg 0.005mg
EUR 240

Recombinant Human Fatty Acid Binding Protein-2

MBS146346-0025mg 0.025mg
EUR 310

Recombinant Human Fatty Acid Binding Protein-2

MBS146346-1mg 1mg
EUR 2880

Recombinant Human Fatty Acid Binding Protein-2

MBS146346-5x1mg 5x1mg
EUR 12630

Recombinant Human Fatty Acid Binding Protein-6

MBS143424-0005mg 0.005mg
EUR 240

Recombinant Human Fatty Acid Binding Protein-6

MBS143424-0025mg 0.025mg
EUR 310

Recombinant Human Fatty Acid Binding Protein-6

MBS143424-1mg 1mg
EUR 3770

Recombinant Human Fatty Acid Binding Protein-6

MBS143424-5x1mg 5x1mg
EUR 16645

Recombinant Human Fatty Acid Binding Protein-7

MBS143425-0005mg 0.005mg
EUR 240

Recombinant Human Fatty Acid Binding Protein-7

MBS143425-0025mg 0.025mg
EUR 310

Recombinant Human Fatty Acid Binding Protein-7

MBS143425-1mg 1mg
EUR 3770

Recombinant Human Fatty Acid Binding Protein-7

MBS143425-5x1mg 5x1mg
EUR 16645

Recombinant Human Fatty Acid Binding Protein-1

MBS145513-0002mg 0.002mg
EUR 240

Recombinant Human Fatty Acid Binding Protein-1

MBS145513-001mg 0.01mg
EUR 310

Recombinant Human Fatty Acid Binding Protein-1

MBS145513-1mg 1mg
EUR 5345

Recombinant Human Fatty Acid Binding Protein-1

MBS145513-5x1mg 5x1mg
EUR 23725

Recombinant Human Fatty Acid Binding Protein-9

MBS145400-0005mg 0.005mg
EUR 240

Recombinant Human Fatty Acid Binding Protein-9

MBS145400-002mg 0.02mg
EUR 310

Recombinant Human Fatty Acid Binding Protein-9

MBS145400-1mg 1mg
EUR 2880

Recombinant Human Fatty Acid Binding Protein-9

MBS145400-5x1mg 5x1mg
EUR 12630

Fatty Acid Binding Protein 2 Human (Recombinant)

22060988-1 5 µg
EUR 137.27

Fatty Acid Binding Protein 4 Human (Recombinant)

22060990-1 2 µg
EUR 137.27

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU55709-100ug 100ug
EUR 633.6

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU55709-1mg 1mg
EUR 2496

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU55709-50ug 50ug
EUR 384

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU55710-100ug 100ug
EUR 633.6

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU55710-1mg 1mg
EUR 2496

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU55710-50ug 50ug
EUR 384

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU56400-100ug 100ug
EUR 293.2

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU56400-1mg 1mg
EUR 1360.4

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU56400-50ug 50ug
EUR 209.3

Recombinant Fatty Acid Binding Protein 5 (FABP5)

RPU57855-100ug 100ug
EUR 508.2

Recombinant Fatty Acid Binding Protein 5 (FABP5)

RPU57855-1mg 1mg
EUR 2358.7

Recombinant Fatty Acid Binding Protein 5 (FABP5)

RPU57855-50ug 50ug
EUR 415.8

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU50986-100ug 100ug
EUR 443.3

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU50986-1mg 1mg
EUR 1965.6

Recombinant Fatty Acid Binding Protein 4 (FABP4)

RPU50986-50ug 50ug
EUR 356.4

Recombinant Fatty Acid Binding Protein 5 (FABP5)

RPU54530-100ug 100ug
EUR 603.9

Recombinant Fatty Acid Binding Protein 5 (FABP5)

RPU54530-1mg 1mg
EUR 2675.4

Recombinant Fatty Acid Binding Protein 5 (FABP5)

RPU54530-50ug 50ug
EUR 485.1

Recombinant Fatty Acid Binding Protein 1 (FABP1)

RPU54613-100ug 100ug
EUR 616
The transcription issue Pax6 is essential for the event of the central nervous system, eye, olfactory system and pancreas, and is implicated in human illness. Whereas a single Pax6 gene exists in human and hen, Pax6 happens as a gene household in different vertebrates, with two members in elephant shark, Xenopus tropicalis and Anolis lizard and three members in teleost fish corresponding to stickleback and medaka. Nevertheless, the complement of Pax6 genes in jawless vertebrates (cyclostomes), the sister group of jawed vertebrates (gnathostomes), is unknown. Utilizing a mix of BAC sequencing and genome evaluation, we found three Pax6 genes in lampreys.

Anolis Carolinensis

TDactyloidae, Iguania, Sauria, Squamata or lizards 
S Anoles
LangE: North American Green Anole, Green anole
S: Anolis Verde
G: Rotkehlanolis 
NL: Roodkeelanolis
SynonymsAnolius carolinensis VOIGT in CUVIER & VOIGT 1832: 71
Lacerta principalis LINNAEUS 1758 (fide DUMÉRIL & BIBRON 1837: 121)
Anolis bullaris DAUDIN 1802: 69 (part.)
Agama bullaris — LINK 1807: 58
Agama strumosa — LINK 1807: 59
Anolis strumosa — HARLAN 1835: 143
Anolis Carolinensis — DUMÉRIL & BIBRON 1837: 120
Anolis podargicus RICHARDSON 1837: 200 (part.)
Dactyloa (Ctenocercus) carolinensis — FITZINGER 1843: 68
Anolis principalis — GRAY 1845: 202
Anolis baccatus BOCOURT 1873: 59
Anolis baccatus — BOULENGER 1885: 54
Anolis carolinensis — BOULENGER 1885: 43
Anolis principalis — LOENNBERG 1894
Anolis baccatus — SMITH & TAYLOR 1950
Anolis baccatus — FITCH & HENDERSON 1973: 127
Anolis carolinensis seminolus VANCE 1991: 75
Norops baccatus — LINER 1994
Anolis carolinensis — LINER 1994
Anolis carolinensis — MCKEOWN 1996
Norops baccatus — NICHOLSON 2002
Anolis carolinensis — NICHOLSON et al. 2005
Anolis baccatus — LINER 2007
Anolis carolinensis seminolus — COLLINS & TAGGART 2009
Anolis carolinensis seminolis [sic] — NICHOLSON et al. 2012
Anolis carolinensis seminolus — CROTHER et al. 2012
Anolis carolinensis — NICHOLSON et al. 2012
Anolis carolinensis — NICHOLSON et al. 2018
Anolis carolinensis seminolis — NICHOLSON et al. 2018 (in error) 
DistributionUSA (E Texas, SE Oklahoma, S Arkansas, Louisiana, Mississippi, Alabama, Georgia, Florida, South Carolina, North Carolina, SE Tennessee), Mexico (incl. Tamaulipas),
Bahamas, Grand Cayman Islands (HR 33: 321), Anguilla (HR 32: 118)

Introduced to Hawaii (fide MCKEOWN 1996) and California.
Introduced to Japan (Chichizima Is. and Hahazima Is. of Ogasawara Islands.And Okinawazima Is.).
Introduced to Micronesia and Guam (G. Rodda, pers. comm., 13 March 2016).
May have been introduced to Tenerife, Canary Islands, Spain (M. Lopez-Darias, Anole Annals July 20, 2016, Stroud et al. 2016)

baccatus: Mexico; Type locality: Mexico;

seminolus: USA (Florida); Type locality: 6.8 miles WNW of Murdock, Sarasota County, Florida.  
Reproductionoviparous Hybridization: Anolis porcatus appears to hybridize with A. carolinensis in Florida (T. Hagey, Anole Annals 2016). 
TypesNeotype: NCSM 93545 (North Carolina Museum of Natural Sciences); was ChR 862 (Charleston Museum), designated by Vance 1991, but collection was later moved to NCSM.
Holotype: MVZ (originally as UCMZ) 53793 [seminolus]
Holotype: MNHN 1126 [baccatus]
Synypes: MCZ 5955, 5956 [principalis] 
DiagnosisDiagnosis (Anolis s.s.): Support for this genus is provided by 47 apomorphies including seven morphological features and 40 molecular ones. There are two unequivocal morphological features: mental scale completely divided (26: a to z); and supratemporal processes leave supraocciptal exposed above (61: z to a). There are 23 unequivocal molecular apomorphies (see Appendix II, from NICHOLSON et al. 2012: 33).
 
CommentSynonymy: partly after VANCE 1991. BOULENGER 1885 listed A. porcatus as synonym of A. carolinensis. A specimen of A. baccatus reported from Sepaquite, Alta Verapaz, Guatemala by Barbour 1934: 124 is actually A. sericeus (fide Stuart, cited in SMITH & TAYLOR 1950: 62). ANDERSSON states that the Lacerta principalis of LINNAEUS 1758 is not Anolis carolinensis. Anolis cooperi BAIRD 1858 is a nomen dubium fide Vance, cited in Smith 1976: 252 (Synopsis VII).

Subspecies: VANCE 1991 described Anolis carolinensis seminolus, but more recent (genetic) studies didn’t find a clear overlap between mrophological seminolus and genetically defined populations, hence Crother et al. 2017 and others do not recognize subspecies within A. carolinensis.

Genetics: In July 2005, the scientific community overwhelmingly chose the green anole lizard, Anolis carolinensis, as its first target species for reptilian genome sequencing, with the American alligator, garter snake and/or painted turtle to follow (http://www.reptilegenome.org) (MODI & CREWS 2005). The genome sequence has been completed in 2011 (Alföldi et al. 2011). Partial genetic content of the Z chromosome is known in colubrids and viperids, and is highly syntenic to chromosome 6 (ACA6) of Anlis carolinensis (”ACA”, Rovatsos et al. 2015).

Evolution: On small islands in Florida, we found that the lizard Anolis carolinensis moved to higher perches following invasion by Anolis sagrei and, in response, adaptively evolved larger toepads after only 20 generations (Stuart et al. 2014).

Sexual dimorphism: the carolinensis and hendersoni clades are the most extreme both in male facial elongation and the degree of sexual dimorphism (Sanger et al. 2013).

Distribution: See maps in Vance 1991, Palmer & Braswell 1995: 116 (USA: Map 23). Probably erroneously reported from Belize. A single specimen (UF 23924) has been collected from Half Moon Cay (Belize), and Lee 1996 reports that this specimen indeed looks like A. carolinensis. Lee (2000) reports that efforts to find additional carolinensis on Half Moon Cay (Belize) have not been successful. However, Anolis allisoni is known from Belize (especially Half Moon Cay), and is very similar (and very closely related) to carolinensis. Not on Cuba (L. Mahler, pers. comm.). There are questionable records from SE Virginia (VANCE 1991).
In Japan, the green anole Anolis carolinensis invaded the Ogasawara Islands in 1960’s and Okinawa Island in 1980’s. Phylogenetic analysis shows that the invader A. carolinensis originated in the western part of the Gulf Coast and inland areas of the United States. Interestingly, all of the invaded A. carolinensis in Ogasawara, Okinawa and Hawaii originated from the Gulf Coast and inland areas of the United States (Suzuki-Ohno et al. 2017).

Species group: Anolis carolinensis species group (fide NICHOLSON et al. 2012).

Type species: Anolis bullaris DAUDIN 1802: 69 is the type species of the genus Anolis DAUDIN 1802 (fide SMITH & TAYLOR 1950: 56). Note however, that PETERS et al. 1970: 43 give Anolis bullaris Latreille as type species). See also Sabrosky 1983 and Stimson & Underwood 1983 for a discussion of the type species for Anolis.

Phylogenetics (genus). For a comprehensive phylogenetic analysis of anoles see Poe et al. 2017, 2018 and Román-Palacios et al. 2018.

Karyotype: 2n=36, XY (males) or XX (females) (Giovannotti et al. 2016) 
EtymologyNamed after the Carolinas where the species was found. A. c. seminolus has been named after the Seminole Indians of Florida.

The name Anolis is from the French l’anole, which is derived from anoli (or anolis) or anaoli (or anoali); aboriginal West Indian words meaning ‘‘lizard’’ (see Nicholson et al., 2012, for more information on the origin of Anolis). Anolis is masculine (Stimson & Underwood 1983). 
ReferencesAlföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD, Ray DA, Boissinot S, Shedlock AM, Botka C, Castoe TA, Colbourne JK, Fujita MK, Moreno RG, ten Hallers BF, Haussler D, Heger A, Heiman D, Janes DE 2011. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477(7366):587-91 – get paper hereAllen, Morrow J. 1932. A survey of the Amphibians and reptiles of Harrison County, Mississippi. American Museum Novitates (542): 1-20 – get paper hereAndersson, L.G. 1900. Catalogue of Linnean type-specimens of Linnaeus’s Reptilia in the Royal Museum in Stockholm. [type catalogue] Bihang till Konglika Svenska Vetenskaps-Akademiens. Handlingar. Stockholm. (4) 26 (1): 1-29. – get paper hereArnold, Debbie M. 1997. Geographic Distribution. Anolis carolinensis carolinensis. Herpetological Review 28 (1): 49 – get paper hereBartlett, R. D. & Bartlett, P. 1999. A Field Guide to Texas Reptiles and Amphibians. Gulf Publishing Co., Houston, Texas, 331 pp.Birkhead, Roger and Mark C. Benny. 2014. Anolis carolinensis (green anole) predation. Herpetological Review 45 (1): 123-124 – get paper hereBishop, D.C. & Echternacht, A.C. 2004. Emergence behavior and movements of winter-aggregated Green Anoles (Anolis carolinensis) and the thermal characteristics of their crevices in Tennessee. Herpetologica 60 (2): 168-177 – get paper hereBocourt, M. E. 1873. In: A. Duméril, M. F. Bocourt, and F. Mocquard, (1870-1909), Etudes sur les reptiles, p. i-xiv; In Recherches Zoologiques pour servir a l’Histoire de Ia Faune de l’Amérique Centrale et du Mexique. Mission Scientifique au Mexique et dans l’Amérique Ce Imprimerie Impériale, Paris, Livr. 2-15, pp. 33-860. – get paper hereBoistel, Renaud;, Anthony Herrel; Renaud Lebrun, Gheylen Daghfous, Paul Tafforeau, Jonathan B. Lososô and Bieke Vanhooydonck|| 2011. Shake Rattle and Roll: The Bony Labyrinth and Aerial Descent in Squamates. Integrative and Comparative Biology, doi:10.1093/icb/icr034 – get paper hereBonetti, Mathilde 2002. 100 Sauri. Mondadori (Milano), 192 pp.Boulenger, G.A. 1885. Catalogue of the lizards in the British Museum (Natural History). Vol. 2, Second edition. London, xiii+497 pp. – get paper hereBourgeois, Yann; Robert Ruggiero, Joseph Manthey, Stephane Boissinot 2018. Recent secondary contacts, background selection and variable recombination rates shape genomic diversity in the model species Anolis carolinensis. BioRxiv – get paper hereBrothers, David. 2013. Anolis carolinensis (green anole) feeding behavior. Herpetological Review 44 (2): 313 – get paper hereBuden, Donald W. & Danko Taboroši 2016. Reptiles of the Federated States of Micronesia. Island Research and Education Initiative, 311 pp. – get paper hereBurt, Charles E. 1935. Further records of the ecology and distribution of amphibians and reptiles in the middle west. American Midland Naturalist 16 (3): 311-336 – get paper hereButh, Donald G.;Gorman, George C.;Lieb, Carl S. 1980. Genetic divergence between Anolis carolinensis and its Cuban progenitor, Anolis porcatus. Journal of Herpetology 14 (3): 279-284 – get paper hereButton, S.T., Greenberg, C.H. & Austin, J.D. 2017. Anolis carolinensis (Green Anole) Diet. Herpetological Review 48 (3): 633-634. – get paper hereCampbell-Staton, Shane C.; Anna Bare, Jonathan B. Losos et al. 2018. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline. Molecular Ecology – get paper hereCampbell-Staton, Shane C.; Scott V. Edwards, andJonathan B. Losos 2016. Climate-mediated adaptation after mainland colonization of an ancestrally subtropical island lizard, Anolis carolinensis. J Evol Biol, DOI: 10.1111/jeb.12935 – get paper hereCampbell‐Staton, Shane C.; Rachel M. Goodman; Niclas Backström; Scott V. Edwards; Jonathan B. Losos & Jason J. Kolbe 2012. Out of Florida: mtDNA reveals patterns of migration and Pleistocene range expansion of the Green Anole lizard (Anolis carolinensis) Ecology and Evolution 2(9): 2274–2284 – get paper hereCooper Jr., W.E. 2005. Duration of movement as a lizard foraging movement variable. Herpetologica 61 (4): 363-372 – get paper hereCrother, B. I. (ed.) 2012. Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles, and Crocodilians, Seventh Edition. Herpetological Circular 39: 1-92Cuvier & Voigt, F.S. 1832. Das Thierreich, geordnet nach seiner Organisation […] Nach der zweiten Ausgabe übersetzt und durch Zusätze erweitert von F.S. Voigt. Band 2. Leipzig, Brockhaus, 539 pp. – get paper hereDaudin 1802. Histoire Naturelle, Générale et Particulière des Reptiles, Vol. 4. F. Dufart, Paris.Dill, A. K., Sanger, T. J., Battles, A. C. and Johnson, M. A. 2013. Sexual dimorphisms in habitat-specific morphology and behavior in the green anole lizard. Journal of Zoology, 290: 135–142 – get paper hereDixon, James R. 2000. Amphibians and reptiles of Texas, second edition. Texas A&M University Press, 421 pp.Doan, Tiffany M.; Brian G. Devlin and Kevin C. Greene 2019. Malaria Infection is Lower in Invasive Anoles than Native Anoles in Central Florida, USA Journal of Herpetology 51 (1): 22 – get paper hereDuméril, A. M. C. and G. Bibron. 1837. Erpétologie Générale ou Histoire Naturelle Complete des Reptiles. Vol. 4. Libr. Encyclopédique Roret, Paris, 570 pp. – get paper hereDundee, H.A., & Rossman, D.A. 1989. The amphibians and reptiles of Louisiana. Louisiana St. Univ. Press, Baton Rouge 300 pp.Fitzinger, L. 1843. Systema Reptilium, fasciculus primus, Amblyglossae. Braumüller et Seidel, Wien: 106 pp. – get paper hereFonseca, Érica, Ricardo Marques and Moacir Santos Tinoco. 2014. Geographical Distribution: Anolis carolinensis (green anole). Herpetological Review 45 (4): 658 – get paper hereGamble, Tony; David Zarkower 2014. Identification of sex-specific molecular markers using restriction site associated DNA sequencing (RAD-seq). Molecular Ecology Resources, DOI: 10.1111/1755-0998.12237 – get paper hereGeorge, Steven G. 1994. Anolis carolinensis (green anole). USA: Louisiana. Herpetological Review 25 (4): 164 – get paper hereGibbons, Whit; Judy Greene, and Tony Mills 2009. LIZARDS AND CROCODILIANS OF THE SOUTHEAST. University of Georgia Press, 240 pp.Giovannotti, M.; & V. A. Trifonov, & A. Paoletti & I. G. Kichigin & P. C. M. O’Brien & F. Kasai & G. Giovagnoli & B. L. Ng & P. Ruggeri & P. Nisi Cerioni & A. Splendiani & J. C. Pereira, & E. Olmo & W. Rens & V. Caputo Barucchi, & M. A. Ferguson-Smit 2016. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae) Chromosoma 126 (2): 245–260 | Cite as DOI 10.1007/s00412-016-0585-6 – get paper hereGodfrey, S.T., Duberstein, J.A., Mota, J. & Moore, W. 2018. Anolis carolinensis (Green Anole) Nest sites and communal nesting. Herpetological Review 49 (1): 115. – get paper hereGoldberg, Stephen R. and Fred Kraus 2017. Reproduction in the Green Anole, Anolis carolinensis (Squamata: Dactyloidae), from Hawaii Current Herpetology Feb 2018, Vol. 37, No. 1: 69-74. – get paper hereGravatt, Dennis 2016. Anolis carolinensis (Green Anole) Diet and perch site Herpetological Review 47 (4): 664-665 – get paper hereGray, J. E. 1845. Catalogue of the specimens of lizards in the collection of the British Museum. Trustees of die British Museum/Edward Newman, London: xxvii + 289 pp. – get paper hereGutsche, A. 2013. Der Rotkehlanolis. Terraria-Elaphe 2013 (3): 74-75 – get paper hereGuyer, Craig; Mark A. Bailey, and Robert H. Mount 2018. Lizards and snakes of Alabama. University of Alabama Press – get paper hereHARRISON, ALEXIS; STEVEN POE 2012. Evolution of an ornament, the dewlap, in females of the lizard genus Anolis. Biological Journal of the Linnean Society 106: 191–201 – get paper hereHelmus, Matthew R.; Jocelyn E. Behm, Wendy A.M. Jesse, Jason J. Kolbe,Jacintha Ellers, and Jonathan B. Losos 2016. EXOTICS EXHIBIT MORE EVOLUTIONARY HISTORY THAN NATIVES: A COMPARISON OF THE ECOLOGY AND EVOLUTION OF EXOTIC AND NATIVE ANOLE LIZARDS. In: Invasion Genetics: The Baker and Stebbins Legacy, First Edition. Edited by Spencer C. H. Barrett, Robert I. Colautti, Katrina M. Dlugosch, and Loren H. Rieseberg; John Wiley & Sons, pp. 122-138 (publication year given as 2017 in the book) – get paper hereHill, R. L. 2012. Geographic distribution: Anolis carolinensis (green anole). Herpetological Review 43: 304Hilliard, T. J., Salmon, G. T. & Johnson, M. A. 2012. Anolis carolinensis (green anole) attempted saurophagy. Herpetological Review 43: 640-641Hudnall, Aaron, Andrew R. MacLaren, Shawn F. McCracken and Michael R. J. Forstner. 2016. Geographic Distribution: Anolis carolinensis (Green Anole). Herpetological Review 47 (1): 80 – get paper hereHusak, Jerry F. 1996. Geographic Distribution. Anolis carolinensis. Herpetological Review 27 (4): 210 – get paper hereIrschick, D.J. Austin, C.C.; Petren, K.; Fisher, R.N.; Losos, J.B. & Ellers, O. 1996. A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc. 59: 21-35 – get paper hereJaffe, Alexander L.; Shane C. Campbell-Staton and Jonathan B. Losos 2015. Geographical variation in morphology and its environmental correlates in a widespread North American lizard, Anolis carolinensis (Squamata: Dactyloidae). Biological Journal of the Linnean Society, DOI: 10.1111/bij.12711 – get paper hereJanes, Daniel E.; Christopher L. Organ, Matthew K. Fujita, Andrew M. Shedlock, and Scott V. Edwards 2010. Genome Evolution in Reptilia, the Sister Group of Mammals. Annu. Rev. Genomics Hum. Genet.11: 239–64 – get paper hereJensen, John B.; Carlos D. Camp, Whit Gibbons, & Matt J. Elliott 2008. Amphibians and reptiles of Georgia. University of Georgia Press, 575 pp.Jenssen, T. A.;Congdon, J. D.;Fischer, R. U.;Estes, R.;Kling, D.;Edmands, S. 1995. Morphological characteristics of the lizard Anolis carolinensis from South Carolina. Herpetologica 51: 401-411 – get paper hereJenssen, Thomas A; Sarah Garrett, and William J Sydor 2012. Complex Signal Usage By Advertising Male Green Anoles (Anolis carolinensis): A Test of Assumptions. Herpetologica 68 (3): 345-357. – get paper hereJones, Zachary M. and and Bruce C. Jayne 2012. The Effects of Sound on the Escape Locomotor Performance of Anole Lizards. Journal of Herpetology 46 (1): 51-55. – get paper hereKamath, Ambika; Yoel E. Stuart, and Todd S. Campbell 2013. Behavioral Partitioning by the Native Lizard Anolis carolinensis in the Presence and Absence of the Invasive Anolis sagrei in Florida. Breviora (535): 1-10. – get paper hereKatsu, Y. et al. 2009. From Reptilian Phylogenomics to Reptilian Genomes: Analyses of c-Jun and DJ-1 Proto-Oncogenes. Cytogenet Genome Res 127: 79-93Kichigin, I.G.;Massimo Giovannotti, Alex I. Makunin, Bee L. Ng, Marsel R. Kabilov, Alexey E. Tupikin, Vincenzo Caputo Barucchi, Andrea Splendiani, Paolo Ruggeri, Willem Rens, Patricia C. M. O’Brien, Malcolm A. Ferguson-Smith, Alexander S. Graphodatsk 2016. Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA Mol Genet Genomics, doi:10.1007/s00438-016-1230-z – get paper hereKöhler, G. 2011. Taxonomic status of Anolis baccatus Bocourt 1873 (Reptilia, Squamata, Polychrotidae). Zootaxa 3015: 61–65 – get paper hereKordis, D. 2009. Transposable Elements in Reptilian and Avian (Sauropsida) Genomes. Cytogenet Genome Res 127: 94-111Kraus, Fred 2015. Impacts from Invasive Reptiles and Amphibians. Annual Review of Ecology, Evolution, and Systematics 46: 75 – 97 – get paper hereKrysko, K.K.; Enge, K.M.; Donlan, E.M.; Golden, E.Z.; Burgess, J.P. & Larson, K.W. 2009. THE NON-MARINE HERPETOFAUNA OF KEY BISCAYNE, FLORIDA. Herp. Cons. Biol. 5 (1):132-142 – get paper hereKusumi, Kenro and Jeanne Wilson-Rawls 2010. Development of functional genomic resources, a gene expression database, and cell culture reagents for molecular analysis of Anolis carolinensis: . Anolis Newsletter VI: 91 – get paper hereLiner, Ernest A. 2007. A CHECKLIST OF THE AMPHIBIANS AND REPTILES OF MEXICO. Louisiana State University Occasional Papers of the Museum of Natural Science 80: 1-60 – get paper hereLink, H.F. 1807. Beschreibung der Naturalien-Sammlung der Universität zu Rostock, zweite Abtheilung. Adlers Erben, Rostock, pp. 51-100 – get paper hereLisachov, A. P., Makunin, A. I., Giovannotti, M., Pereira, J. C., Druzhkova, A. S., Caputo Barucchi, V., Trifonov, V. A. 2019. Genetic Content of the Neo-Sex Chromosomes in Ctenonotus and Norops (Squamata, Dactyloidae) and Degeneration of the Y Chromosome as Revealed by High-Throughput Sequencing of Individual Chromosomes. Cytogenetic and Genome Research – get paper hereLjustina, O. and J. T. Stroud 2017. Anolis carolinensis (American Green Anole) Possible kleptothermy. Herpetological Review 48 (2): 434-435 – get paper hereLOMBARDO,MICHAEL P. & PATRICK A. THORPE 2008. Digit Ratios in Green Anolis Lizards (Anolis carolinensis). Anatomical Record 291:433–440Lönnberg, Einar 1894. Notes on reptiles and batrachians collected in Florida in 1892 and 1893. Proc. US Natl. Mus. 17 (1003): 317-339 – get paper hereLosos, Jonathan B.;Irschick, Duncan J.;Schoener, Thomas W. 1994. Adaptation and constraint in the evolution of specialization of Bahamian Anolis lizards. Evolution 48 (6): 1786-1798 – get paper hereMacedonia, Joseph M.; David L. Clark, Lauren E. Cherry, Natasha E. Mohamed, and Bradley W. Bartel 2015. Comparison of Headbob Displays in Gray-Dewlapped and Red-Dewlapped Populations of Green Anoles (Anolis carolinensis). Herpetologica Jun 2015, Vol. 71, No. 2: 117-124. – get paper hereMallatt, Jon and Christopher J. Winchell 2007. Ribosomal RNA genes and deuterostome phylogeny revisited: More cyclostomes, elasmobranchs, reptiles, and a brittle star. Molecular Phylogenetics and Evolution 43 (3): 1005-1022 – get paper hereMalone, John H.;Davis, Wayne 1998. Geographic distribution. Anolis carolinensis. Herpetological Review 29 (4): 248 – get paper hereManthey, U. 1984. 9 Jahre Anolis – Zucht, Teil 1: Erfahrungen und Ergebnisse. Sauria 6 (2): 31-34 – get paper hereMckeown, Sean 1996. A Field Guide to Reptiles and Amphibians in the Hawaiian Islands. Diamond Head Publishing, Inc., Los Osos, CA,McMillan, David M. and Duncan J. Irschick 2010. Experimental Test of Predation and Competition Pressures on the Green Anole (Anolis carolinensis) in Varying Structural Habitats. Journal of Herpetology 44 (2): 272–278 – get paper hereMichaud, Edward J.;Echternacht, Arthur C. 1995. Geographic variation in the life history of the lizard Anolis carolinensis and support for the pelvic constraint model. Journal of Herpetology 29 (1): 86-97 – get paper hereModi, W.S. & Crews, D. 2005. Sex chromosomes and sex determination in reptiles. Curr Opin Genet Dev 15: 660-665Montuelle, Stéphan; Gheylen Daghfous, and Vincent Bels 2010. Integration of trophic and locomotor performance during prey-capture behavior in Anolis carolinensis: effects of the substrate diameter. Anolis Newsletter VI: 152-162 – get paper hereNicholson, K. E., R. E. Glor, J. J. Kolbe, A. Larson, S. B. Hedges, and J. B. Losos 2005. Mainland colonization by island lizards. Journal of Biogeography 32: 929–938 – get paper hereNicholson, K.E. 2002. Phylogenetic analysis and a test of the current infrageneric classification of Norops (beta Anolis). Herpetological Monographs 16: 93-120 – get paper hereNICHOLSON, KIRSTEN E.; BRIAN I. CROTHER, CRAIG GUYER & JAY M. SAVAGE 2012. It is time for a new classification of anoles (Squamata: Dactyloidae). Zootaxa 3477: 1–108 – get paper hereNICHOLSON, KIRSTEN E.; BRIAN I. CROTHER, CRAIG GUYER & JAY M. SAVAGE 2018. Translating a clade based classification into one that is valid under the international code of zoological nomenclature: the case of the lizards of the family Dactyloidae (Order Squamata). Zootaxa 4461 (4): 573–586 – get paper hereNorval, Gerrut; Jean-Jay Mao and Stephen R. Goldberg. 2012. A record of a green anole (Anolis carolinensis Voigt 1832), from the wild in southwestern Taiwan. Herpetology Notes 6: 95-97 – get paper hereOliver, James A. 1951. “Gliding” in amphibians and reptiles, with a remark on an arboreal adaptation in the lizard, Anolis carolinensis carolinensis Voight. American Naturalist 85 (822): 171-176 – get paper herePalmer, W.M. & Braswell, A.L. 1995. Reptiles of North Carolina. Univ. North Carolina PressPansza, Janelle M. and Robert Powell 2005. Geographic Distribution: Anolis carolinensis (Green Anole). Herpetological Review 36 (2):201. – get paper herePauly, Gregory B. and David B. Borthwick. 2015. Geographic Distribution: Anolis carolinensis (green anole). Herpetological Review 46 (4): 567 – get paper herePetzing, John; Phillips, Christopher A. 1998. Geographic Distribution. Anolis carolinensis. Herpetological Review 29 (2): 110 – get paper herePierson, T. 2012. Geographic distribution: Anolis carolinensis (green anole). Herpetological Review 43: 304Poe, S. 2004. Phylogeny of anoles. Herpetological Monographs 18: 37-89 – get paper herePoe, S. 2013. 1986 Redux: New genera of anoles (Squamata: Dactyloidae) are unwarranted. Zootaxa 3626 (2): 295–299 – get paper herePoe, Steven; Adrián Nieto-Montes de Oca, Omar Torres-Carvajal, Kevin de Queiroz, Julián A. Velasco, Brad Truett, Levi N. Gray, Mason J. Ryan, Gunther Köhler, Fernando Ayala-Varela, and Ian Latella 2018. Comparative Evolution of an Archetypal Adaptive Radiation: Innovation and Opportunity in Anolis Lizards. The American Naturalist – get paper herePoe, Steven; Adrián Nieto-montes de Oca, Omar Torres-carvajal, Kevin De Queiroz, Julián A. Velasco, Brad Truett, Levi N. Gray, Mason J. Ryan, Gunther Köhler, Fernando Ayala-varela, Ian Latella 2017. A Phylogenetic, Biogeographic, and Taxonomic study of all Extant Species of Anolis (Squamata; Iguanidae). Syst Biol 2017: syx029 – get paper hereRajeev, M. & Rajeev, M. 2012. Geographic distribution: Anolis carolinensis (green anole). Herpetological Review 43: 304Rauh, J. 2006. Der Rotkehlanolis (Anolis carolinensis). Natur und Tier Verlag (Münster), 64 pp. – get paper hereRichardson, J. 1837. Report on North American Zoology. 6th Ann. Rept. British Assoc. 6: 121-224 [1836]Román-Palacios, C., Tavera, J., & Castañeda, M. del R. 2018. When did anoles diverge? An analysis of multiple dating strategies. Molecular Phylogenetics and Evolution, 127, 655–668 – get paper hereRovatsos M, Vukić J, Lymberakis P, Kratochvıl L. 2015. Evolutionary stability of sex chromosomes in snakes. Proc. R. Soc. B 282: 20151992 – get paper hereRovatsos, Michail; Marie Altmanová, Martina Pokorná and Lukáš Kratochvíl 2014. CONSERVED SEX CHROMOSOMES ACROSS ADAPTIVELY RADIATED ANOLIS LIZARDS. Evolution, DOI: 10.1111/evo.12357 – get paper hereSabrosky, C.W. 1983. Comment on the Type Species of Anolis Daudin, 1802. Bull. zool. Nomenclature 40 (1): 15-16 – get paper hereSanger, T. J., Sherratt, E., McGlothlin, J. W., Brodie, E. D., Losos, J. B. and Abzhanov, A. 2013. CONVERGENT EVOLUTION OF SEXUAL DIMORPHISM IN SKULL SHAPE USING DISTINCT DEVELOPMENTAL STRATEGIES. Evolution, 67: 2180–2193 – get paper hereSanger, Thomas J. & Bonnie K. Kircher 2017. Model Clades Versus Model Species: Anolis Lizards as an Integrative Model of Anatomical Evolution Methods in Molecular Biology book series (MIMB, volume 1650) – get paper hereSanger, Thomas J.; Liam J. Revell, Jeremy J. Gibson-Brown and Jonathan B. Losos 2012. Repeated modification of early limb morphogenesis programmes underlies the convergence of relative limb length in Anolis lizards Proc. R. Soc. B (2012) 279, 739–748, doi:10.1098/rspb.2011.0840 – get paper hereSater, N.M. & Smith, C.E. 2018. Anolis carolinensis (Green Anole) Interspecific mating. Herpetological Review 49 (1): 114-115. – get paper hereSchneider, C.J. 2009. Exploiting genomic resources in studies of speciation and adaptive radiation of lizards in the genus Anolis. Integrative and Comparative Biology, 48 (4): 520–526Sirsi, S., R., M.A., Forstner, M.R.J. & Fioley, D.H., III. 2017. Geographic Distribution: Anolis carolinensis (Green Anole). Herpetological Review 48 (4): 810-811 – get paper hereSmith,H.M. & Taylor,E.H. 1950. An annotated checklist and key to the reptiles of Mexico exclusive of the snakes. Bull. US Natl. Mus. 199: 1-253 – get paper hereStevenson, Dirk J., Christopher L. Jenkins, Kevin M. Stohlgren, John B. Jensen, David L. Bechler, Ian Deery, Daniel Duff, Sean P. Graham, Robb Herrington, Phillip Higgins, Robert V. Horan, III, Crystal Kelehear, Dylan Kelly, Kelsie Kincaid, Lance D. 2015. Significant new records of amphibians and reptiles from Georgia, USA. Herpetological Review 46 (4): 597-601 – get paper hereStimson, A.F. & Underwood, G.L. 1983. Comment on the Type Species of Anolis Daudin, 1802. Bull. zool. Nomenclature 40 (1): 17-19 – get paper hereStroud, Outerbridge, Giery 2016. First Specimen of an American Green Anole (Anolis carolinensis) on the Oceanic Island of Bermuda, with a Review of the Species’ Current Global Distribution. IRCF Rept Amph 23 (3):188–190 – get paper hereStuart, Y. E.; T. S. Campbell, P. A. Hohenlohe, R. G. Reynolds, L. J. Revell, J. B. Losos 2014. Rapid evolution of a native species following invasion by a congener. Science 346, 463 (2014);<br />DOI: 10.1126/science.1257008 – get paper hereStuart, Yoel E. 2010. Ecological character displacement in Anolis carolinensis. Anolis Newsletter VI: 186-193 – get paper hereSuzuki-Ohno Y, Morita K, Nagata N, et al. 2017. Factors restricting the range expansion of the invasive green anole Anolis carolinensis on Okinawa Island, Japan Ecol Evol. 2017;00:1–10 – get paper hereTerán-Juárez, Sergio A., Elí García Padilla, Vicente Mata-Silva, Jerry D. Johnson and Larry David Wilson. 2016. The herpetofauna of Tamaulipas, Mexico: composition, distribution, and conservation status. Mesoamerican Herpetology 3 (1): 43–113 – get paper hereTerán-Juárez, Sergio A.; Elí García-Padilla, Francisco E. Leyto-Delgado, and Leccinum J. García- Morales 2015. New records and distributional range extensions for amphibians and reptiles from Tamaulipas, Mexico. Mesoamerican Herpetology 2 (2): 208-214 – get paper hereThawley, Christopher J. and Fern Graves. 2014. Geographic Distribution: Anolis carolinensis (green anole). Herpetological Review 45 (2): 282 – get paper hereToda, Mitsuhiko; Noriyuki Komatsu, Hiroo Takahashi, Naomi Nakagawa, and Naozumi Sukigara 2013. Fecundity in Captivity of the Green Anoles, Anolis carolinensis, Established on the Ogasawara Islands. Current Herpetology Aug 2013, Vol. 32, No. 2: 82-88.Tollis M, Ausubel G, Ghimire D, Boissinot S 2012. Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species. PLoS One 7 (6): e38474. doi:10.1371/journal.pone.0038474 – get paper hereTollis M, Boissinot S. 2014. Genetic variation in the green anole lizard (Anolis carolinensis) reveals island refugia and a fragmented Florida during the quaternary. Genetica. 2014 Feb;142(1):59-72. doi: 10.1007/s10709-013-9754-1Tollis, Marc & Stéphane Boissinot 2013. Genetic variation in the green anole lizard (Anolis carolinensis) reveals island refugia and a fragmented Florida during the quaternary. Genetica (2014) 142:59–72; DOI 10.1007/s10709-013-9754-1Unger, S D & Keenan, D M; 2018. Efficacy of visible implant elastomer (VIE) tag retention in the Green Anole, Anolis carolinensis, by using ImageJ color analysis Herpetological Review 49 (4): 677-681 – get paper hereValle, Luisa Dalla and Lorenzo Alibardi 2010. Forty hard keratin-associated beta-proteins (beta-keratins) allow the formation of all types of scales, adhesive pads and claws in Anolis carolinensis. Anolis Newsletter VI: 28-32 – get paper hereVance T. 1991. MORPHOLOGICAL VARIATION AND SYSTEMATICS OF THE GREEN ANOLE ANOLIS-CAROLINENSIS (REPTILIA, IGUANIDAE). Bull. Maryland Herp. Soc. 27 (2): 43-89. – get paper herevon Geldern, Charles E. 1919. Mechanism in the production of the throat-fan in the Florida chameleon, Anolis carolinensis. Proc. Cal. Acad. Sci. 9 (12): 313-329 – get paper herevon Geldern, Charles E. 1921. Color changes and structure of the skin of Anolis carolinensis. Proc. Cal. Acad. Sci. 10 (10): 77-117 + 3 plates – get paper hereWade, J. K.;Echternacht, A. C.;McCracken, G. F. 1983. Genetic variation and similarity in Anolis carolinensis (Sauria: Iguanidae). Copeia 1983 (2): 523-529 – get paper hereWalguarnery, Justin W.; Rachel M. Goodman, and Arthur C. Echternacht 2012. Thermal Biology and Temperature Selection in Juvenile Lizards of Co-occurring Native and Introduced Anolis Species. Journal of Herpetology 46 (4): 620-624. – get paper hereWard, Chelsea K. and Roger D. Birkhead. 2015. Anolis carolinensis (green anole) diet. Herpetological Review 46 (2): 250-251 – get paper hereWeller, W.H. 1930. Records of Some Reptiles and Amphibians from Chimney Rock Camp, Chimney Rock N. C., and Vicinity. Proc. Jr. Soc. Nat. Hist. Cincinnati 1 (8-9): 51-54 [unnumbered pages]Wilson, B. & Holt, B.D. 2017. Geographic Distribution: Anolis carolinensis (Green Anole). Herpetological Review 48 (4): 810 – get paper hereYabuta, Shinji and Akiko Suzuki-Watanabe 2011. Function of Body Coloration in Green Anoles (Anolis carolinensis) at the Beginning of the Breeding Season: Advertisement Signaling and Thermoregulation. Current Herpetology Dec 2011, Vol. 30, No. 2: 155-158. – get paper hereYasumiba, Kiyomi; Ayumi Okada, Isamu Okochi, and Noriko Iwai 2016. Minimum Longevity and Growth of the Invasive Green Anole, Anolis carolinensis, in Chichi-jima of the Ogasawara Islands, Japan Current Herpetology Aug 2016, Vol. 35, No. 2: 101-105. – get paper hereYuan, M. L., M. H. Wake, and I. J. Wang. 2019. Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the Anolis adaptive radiation. Evolution 73:231–244 – get paper here 
External links
IUCN Red List – Anolis carolinensis – Least Concern, LCNational Center for Biotechnology Information

http://museum.nhm.uga.edu/~GAWildlife/Reptiles/reptsp.html
http://www.math.ie.kanagawa-u.ac.jp
http://gto.ncsa.uiuc.edu/pingleto/herps/lizards.html
http://www.wildherps.com/families/Polychrotidae.html
http://www.kingsnake.com/anolecare
http://www.anoleannals.org/2012/06/11/the-gray-dewlapped-anoleanolis-carolinensis-seminolus/
http://www.anoleannals.org/2014/05/30/green-anole-color-morphs/
http://www.spiegel.de/wissenschaft/natur/evolution-echse-entwickelt-klebefuesse-in-nur-15-jahren-a-998309.html
http://www.anoleannals.org/2015/06/10/are-brown-anoles-in-florida-really-driving-green-anoles-to-extinction/
http://www.anoleannals.org/2016/07/13/jmih-2016-genetic-evidence-of-hybridization-between-the-native-green-anole-anolis-carolinensis-and-the-invasive-cuban-green-anole-a-porcatus/
http://www.anoleannals.org/2016/07/20/introduced-anolis-species-in-tenerife-canary-islands-spain/
http://www.anoleannals.org/2017/05/19/factors-restricting-range-expansion-for-the-invasive-green-anole-anolis-carolinensis-on-okinawa-island-japan/Google images

Anolis lizzard Genome

Comparative studies of amniotes have been hindered by a dearth of reptilian molecular sequences. With the genomic assembly of the green anole, Anolis carolinensis available, non-avian reptilian genes can now be compared to mammalian, avian, and amphibian homologs. Furthermore, with more than 350 extant species in the genus Anolis, anoles are an unparalleled example of tetrapod genetic diversity and divergence. As an important ecological, genetic and now genomic reference, it is imperative to develop a standardized Anolis gene nomenclature alongside associated vocabularies and other useful metrics.

Results

Here we report the formation of the Anolis Gene Nomenclature Committee (AGNC) and propose a standardized evolutionary characterization code that will help researchers to define gene orthology and paralogy with tetrapod homologs, provide a system for naming novel genes in Anolis and other reptiles, furnish abbreviations to facilitate comparative studies among the Anolis species and related iguanid squamates, and classify the geographical origins of Anolis subpopulations.

Conclusions

This report has been generated in close consultation with members of the Anolis and genomic research communities, and using public database resources including NCBI and Ensembl. Updates will continue to be regularly posted to new research community websites such as lizardbase. We anticipate that this standardized gene nomenclature will facilitate the accessibility of reptilian sequences for comparative studies among tetrapods and will further serve as a template for other communities in their sequencing and annotation initiatives.

Background

As the rate of generating new sequence assemblies continues to accelerate, the final bottleneck that remains is annotation. While automated pipelines have been developed, it is still up to community initiatives to pool, evaluate, integrate, and disseminate the necessary resources required for functional and comparative annotations that support research needs. The presence of multiple tools and resources, and changing assemblies and annotations, presents “moving-target” challenges for those attempting to assign function, orthology, nomenclature and other common vocabulary to genetic loci. One challenge is that many assemblies are, or will be, periodically updated due to resequencing efforts that aim to fill in ever-present gaps, initiatives to provide a consensus reference sequence that takes into account the polymorphism present in a species, or a re-deployment of different assembly algorithms. The second challenge is that the generation of confidently assigned gene models on a fixed assembly generally correlates with the amount of effort that a community puts into annotating their genome of interest. A third challenge relates to the principle that orthologous (and by association, functional) assignments are interdependent on the quality and quantity of annotations from closely related genomes.